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Abstract

Granulometries constitute one of the most useful and versatile sets of tools of morphological image analysis. They
can be applied to a wide range of tasks, from feature extraction, to texture characterization, to size estimation, to
image segmentation, etc. However, traditional granulometry algorithms|involving sequences of openings or closings
with structuring elements of increasing size|are prohibitively costly on non-specialized hardware. This problem has
prevented granulometries from reaching a high level of popularity in the image analysis community.

In this paper, a comprehensive set of fast algorithms for computing granulometries in binary images is �rst
proposed: linear granulometries (i.e., granulometries based on openings with line segments) constitute the easiest
case, and are computed using image \run-length". The 2-D case (granulometries with square or \diamond"-shaped
structuring elements, or granulometries with unions of line-segments at di�erent orientations) involves the determi-
nation of opening functions or granulometry functions. The grayscale case is then addressed, and a new algorithm
for computing grayscale linear granulometries is introduced. This algorithm is orders of magnitude faster than any
previously available technique. The techniques introduced in this paper open up a new range of applications for
granulometries, examples of which are described in the paper.

1 Introduction

The concept of granulometry was introduced by G. Matheron in 1967 [10] as a new tool for studying porous media.
The size of the pores in such media was characterized using series of openings with structuring elements of increasing
size [15]. The theoretical study of these operations led Matheron to propose the following de�nition:

De�nition 1 Let � = (��)��0 be a family of image transformations depending on a unique parameter �. This
family constitutes a granulometry if and only if the following properties are satis�ed:

8� � 0; �� is increasing; (1)

8� � 0; �� is anti-extensive; (2)

8� � 0; � � 0; ���� = ���� = �max(�;�) (3)

Property (3) implies that for every � � 0, �� is an idempotent transformation. Therefore, (��)��0 is nothing but a
decreasing family of algebraic openings [15]. Conversely, one can prove that for any convex set B, the family of the
openings with respect to �B = f�b j b 2 Bg, � � 0, constitutes a granulometry [11].

More intuitively, suppose now that the transformations considered are acting on discrete binary images, or sets.
In this context, a granulometry is a sequence of openings �n, indexed on an integer n � 0. Each opening is smaller
than the previous one:

8X; 8n � m � 0; �n(X) � �m(X): (4)



The granulometric analysis of X with family of openings (�n)n�0 is often compared to a sifting process: X is sifted
through a series of sieves with increasing mesh size. Each opening (corresponding to one mesh size) removes more
than the previous one, until the empty set is �nally reached. The rate at which X is sifted is characteristic of this
set and provides a \signature" of X with respect to the granulometry used. Denote by m(A) the measure of a set A
(area or number of pixels in 2-D, volume in 3-D, etc):

De�nition 2 The granulometric curve or pattern spectrum [9] of a set X with respect to a granulometry � = (�n)n�0
is the mapping PS�(X) given by:

8n > 0; PS�(X)(n) = m(�n(X))�m(�n�1(X)): (5)

Since (�n(X))n�0 is a decreasing sequence of sets (�0(X) � �1(X) � �2(X) � � � �), it is possible to condense
its representation by introducing the concept of granulometry function [8, 19, 5]:

De�nition 3 The granulometry function or opening function G�(X) of a binary image X for granulometry � =
(�n)n�0 maps each pixel x 2 X to the size of the �rst n such that x 62 �n(X):

x 2 X 7�! G�(X)(x) = minfn > 0 j x 62 �n(X)g: (6)

For any n > 0, the threshold of G�(X) above a value n is equal to �n(X):

�n(X) = fp 2 X j G�(X)(p) > ng:

The following property follows immediately and states that the pattern spectrum can be obtained as histogram of
the granulometry function:

Proposition 4 The pattern spectrum PS�(X) of X for granulometry � = (�n)n�0 can be derived from the granu-
lometry function G�(X) as follows:

8n > 0; PS�(X)(n) = cardfp j G�(X)(p) = ng; (7)

where card stands for the cardinal (number of pixels) in a set.

The concept of granulometry function is central to the algorithms described in section 4. An example of square
granulometry function is shown in Fig. 1.

(a) (b) (c)

Figure 1 : (a) original binary image of co�ee beans, (b) square granulometry
function of this image, in which dark regions correspond to higher
pixel value (c) level lines of the granulometry function.

The granulometries that have been described so far are often referred to as granulometries by openings. By
duality, granulometries by closing can also be de�ned [19]; the granulometric analysis of a set X with respect to a



family of closings is strictly equivalent to the granulometric analysis of XC (complement of X) with the family of
dual openings. Therefore, from now on, only granulometries by openings are considered. Similarly, these notions
can be directly extended to grayscale images; in this context, the measure m chosen is the \volume" of the image
processed, i.e. the sum of all its pixel values.

The granulometric analysis of Fig. 1a with respect to a family of openings with squares (as was used for Fig. 1)
is shown in Fig. 2. From the observed pattern spectrum, the typical size of the beans (as size of the largest square a
bean can contain) in this image can easily be derived. Granulometries therefore allow one to extract size information
without any need for prior segmentation: the beans in this image are highly overlapping, yet their size can be
estimated without individually identifying each bean.
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Figure 2 : (a) Successive openings of a Fig. 1 using squares of increasing size
as structuring elements. (b) Corresponding granulometric curve,
or pattern spectrum: the peak at size 20 is indicative of the typical
size of the beans in original image.

Granulometries have been used for a variety of other image analysis tasks, including shape characterization and
feature extraction (see for example [20]), texture classi�cation (see [3]), and even segmentation (see for example
[4]). Nonetheless, until recently, granulometric analysis involved performing a series of openings and/or closings of
increasing size, which is prohibitively expensive for most applications, unless dedicated harware is used.

In the next section, we �rst brie
y review the literature on granulometry algorithms. A comprehensive set of fast
binary granulometry algorithms is then proposed: section 3 is concerned with the simple case of linear granulometries.
In section 4, more complex cases, such as granulometries with squares, are discussed. The corresponding algorithms
involve the determination of granulometry functions, for which fast algorithms are proposed. Following prop. 4's
result, pattern spectra are then derived by simple histogramming,

Lastly, the grayscale case is considered in section 5 a new algorithm is introduced for computing linear grayscale
granulometries. The algorithm is several orders of magnitude faster than any previouly available technique. It makes
it therefore possible to use granulometries where previously unthinkable. We illustrate this point by using this new
algorithm to e�ciently extract size information directly from a grayscale image.

2 Background, Previous Work

The literature on mathematical morphology is not short of algorithms for computing erosions and dilations, openings
and closings, with various structuring elements, in binary and in grayscale images. Reviewing them would be beyond
the scope of this paper. But no matter how e�cient an opening algorithm is used, determining a patterm spectrum



using a sequence of openings is a very time-consuming task given the number of operations involved. Furthermore,
since the size of the structuring element increases with n, so does the computation time of the corresponding opening.
Even if we assume that the computation time of �n(X) (n-th opening in the series) can be done in constant time
(which is not always true depending on the structuring element and on the opening algorithm used), determining
the pattern spectrum up to size n using openings is still an O(n) algorithm.

The few granulometry algorithms found in literature only deal with the binary case, and have in common the
use of granulometry functions as an intermediate step. The algorithm proposed by Yuan [21] for determining binary
square granulometries consists in �rst determining the quench function of the original set X . The quench function
maps each pixel p of the skeleton (medial axis) SX of X to the size (radius) SX(p) of the corresponding maximal
square. An example is shown in Fig. 3 (See [16] for more details on these concepts). In a second step, each pixel p of
the skeleton is replaced by a square centered at this pixel, with size SX(p), and gray-level SX(p) + 1. The pixelwise
maximum of all these squares provides the granulometry function of X . This algorithm is faster than the brute force
method described in the previous paragraph, but still requires a signi�cant amount of image scans. In addition, the
more complicated the image or the larger the objects in it, the longer this method takes.

Figure 3 : Quench function of Fig. 1a, dilated for clarity; dark skeleton pixels
correspond to large values of the quench function.

Suprisingly, a better algorithm can be found in an earlier paper by La�y [8], in which the author devotes a few
lines to the description of a sequential algorithm [12, 17] based on the distance function [13, 2], and also using the
granulometry function as an intermediate step. This algorithm still provides one of the most e�cient implementations
to date for binary granulometries with structuring elements such as squares and hexagons. In section 4, this technique
is for the �rst time described in detail, and is extended to other types of binary granulometries.

The algorithm proposed in 1992 by Haralick et al is interesting in that it allows in principle to compute granu-
lometry functions with respect to any family of homothetic elements1. However, for simple structuring elements such
as squares, this technique is not as e�cient as the one mentioned in the previous paragraph, because its elementary
steps (propagation and merging of lists of \propagators") are rather computationally intensive, therefore relatively
slow.

3 Linear Granulometries in Binary Images

Linear granulometries in binary images constitute the simplest possible case of granulometries. Let us for example
consider the horizontal granulometry, i.e., the granulometry by openings with the (Ln)n�0 family of structuring
elements, where:

Ln = � � � . . . � �| {z }
n+1 pixels

(8)

1The base element does not even have to be convex!



From now on, we use the convention that the center of a structuring element is marked using a thicker dot than is
used for the other pixels. Note that the location of the center of the structuring elements used has no in
uence on
the resulting granulometry.

Let us analyze the e�ect of an opening by Ln, n � 0 on a discrete set X (binary image). The following notations
are used from now on: the neighbors of a given pixel p in the square grid are denoted N0(p), N1(p),. . . , N7(p), and
the eight elementary directions are encoded in the following way:

� 0

123

4

5 6 7 (9)

For a direction d 2 f0; 1; : : : ; 7g and k � 0, we denote by N
(k)
d (p) the k-th order neighbor of pixel p in direction d:

N
(0)
d (p) = p; and k > 0 =) N

(k)
d (p) = Nd(N

(k�1)
d (p)): (10)

The opposite of direction d is denoted �d. For example, if d = 3, then �d = 7.

De�nition 5 The ray in direction d at pixel p in set X is given by:

rX;d(p) = fN
(k)
d (p) j k � 0 and 80 � j � k;N

(j)
d (p) 2 Xg: (11)

With each pixel p 2 X , we also associate a run in direction d, de�ned as the union of the rays in direction d and in
direction �d.

De�nition 6 The run in direction d at pixel p in set X is given by:

RX;d(p) = rX;d(p) [ rX; �d(p): (12)

The number of pixels in a run R will be called length of this run and denoted l(R).

The following proposition is immediate:

Proposition 7 The opening of X by Ln, denoted X �Ln, is the union of the horizontal runs RX;0(p) whose length
is strictly greater than n:

X � Ln =
[
p2X

fRX;0(p) j l(RX;0(p)) > ng: (13)

Therefore, any horizontal run of length n is left unchanged by all the openings with Lk, k < n, and is removed by
any opening with Lk, k � n. Hence, the corresponding pattern spectrum PS0 satis�es:

8n > 0; PS0(X)(n) = cardfp 2 X j l(RX;0(p)) = ng: (14)

An extremely e�cient 1-scan horizontal granulometry algorithm is easily derived from this formula:

Algorithm: horizontal binary granulometry

� Initialize pattern spectrum: for each n > 0, PS[n] 0

� Scan each line of image from left to right.

� In this process, each time a run R is discovered, do:

PS[l(R)] PS[l(R)] + l(R);

In applications where directional information is of interest, this algorithm provides a very useful and e�cient
way to extract size information characterizing the image under study. Consider for example Fig. 4a, which is a binary
image of lamellar eutectics; In [14], M. Schmitt proposed a variety of methods for extracting the defect lines present
in this image. Di�erent methods used di�erent kind of information about this image, and some required a knowledge
of the typical width of the lamellae. This width can be accurately estimated by adapting the previous algorithm to
the computation of linear granulometries at +45 degree orientation (direction perpendicular to the lamellae). The
resulting pattern spectrum is shown in Fig. 4b, and its peak at 3 indicates that the typical width of the lamellae is
of 3 pixels.
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Figure 4 : Binary image of lamellar eutectics (a) and its granulometric curve
using line segments at +45 degrees orientation (b)

4 Granulometry Functions on Binary Images

For non 1-D granulometries, the direct approach described in the previous section becomes intractable. Consider for
example the case of a granulometry (�n)n�0 where �n is a maximum of openings with the horizontal segment Ln
and its vertical counterpart L?n . For each pixel, it becomes necessary to know the size of the horizontal run as well
as the vertical run it belongs to.

Linear granulometry functions are therefore the required step. Given the horizontal and the vertical granulometry
functions ofX , the granulometry function ofX corresponding to the (�n)n�0 of previous paragraph is simply obtained
as a pixelwise maximum. More generally, the same is true for any two granulometry functions, and the following
proposition can be stated:

Proposition 8 Let � = (�n)n�0 and 	 = ( n)n�0 be two granulometries. Then, max(�;	) = (max(�n;  n))n�0 is
also a granulometry and for any set X:

Gmax(�;	)(X) = max(G�(X); G (X)): (15)

Determining the linear granulometry function of a binary image is a relatively straightforward task. Take for
example the horizontal case: like in previous section, the principle of the granulometry function algorithm is to locate
each horizontal run. But now, in addition, each run R gets also tagged with its length l(R). This involves scanning
the black pixels of the image twice, and the white pixels only once. The resulting algorithm is hardly more time
consuming than the one described in the previous section. Examples of linear granulometry functions are shown in
Fig. 5.

The case of truly 2-D binary granulometry functions is the next level up in complexity. In the rest of this section,
we �rst focus on granulometry functions GS(X) based on openings with the homothetics of elementary square S,
then we deal with the case of granulometry functions GD(X) based on the elementary \diamond" shape D.

S =
� �

� ��
; D =

�

� � �

�

(16)

Together with the linear case, these granulometries cover 99% of all practical needs.
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Figure 5 : (a) Horizontal granulometry function; (b) vertical granulometry
functions. (c) Pointwise maximum of these two images provides
the granulometry function corresponding to maxima of openings
with vertical and horizontal line segments.

Like Haralick's algorithm [5], the �rst step of the present one consists in computing what some authors have
called a generalized distance function [1, 6]. Let B be an arbitrary structuring element containing its center. Let

nB = B �B � � � �B| {z }
ntimes

denote the structuring element \of size n". Let also "B denote the erosion by structuring element B [15]:

"B(X) = X 	 �B:

De�nition 9 The generalized distance function dB(X) with respect to the family of structuring elements (nB)n>0
assigns to each pixel p 2 X the smallest k > 0 such that p 62 "kB(X):

dB(X)(p) = minfk > 0 j p 62 "kB(X): (17)

Generalized distance functions are determined using sequential algorithms that are straightforwardly derived
from the original algorithm proposed by Rosenfeld [12, 13]. When the center of the structuring element is in the
bottom-right corner of element B (last pixel met in a raster-order scan of this element), the distance function dB(X)
can be computed in one single raster scan.

In the case where B = S (see Eq. (16)), the following algorithm can be proposed:

Algorithm: Generalized distance function with square S

� Input: binary image I of set X

� Scan I in raster order;

� Let p be the current pixel;

� if I(p) = 1 (p is in X):

I(p) minfI(N4(p)); I(N3(p)); I(N2(p))g+ 1;

An example of generalized distance function resulting from this algorithm is shown in Figs. 6a{b. A way to
interpret the result is to say that, for each pixel p, if one was to translate structuring element [dS(X)(p)]S so that
its center coincides with p, this translated element|denoted p + [dS(X)(p)]S|would be entirely included in X .
However, p+ [dS(X)(p) + 1]S 62 X . We can therefore state the following proposition:



Proposition 10 The granulometry function GS(X) is obtained from dS(X) as follows:

8p 2 X; GS(X)(p) = maxfdS(X)(q) j p 2 (q + dS(X)(q)S)g: (18)

In algorithmic terms, we can compute GS(X) by propagating the value dS(X)(p) of each pixel p over the square
p+ dS(X)(p)S, and then by taking the pixelwise maximum of the values propagated at each pixel.

In the technique proposed by Haralick et al [5], this propagation step is achieved via an anti-raster scan of the
distance function image, in which, at each pixel, a list of propagated values is maintained. In the particular case of
square granulometry function GS(X), computing the value at pixel p as well as the list of propagated values at p,
requires a merging of the lists of propagated values at pixels N0(p), N6(p), and N7(p).

This merging step turns out to be expensive, and in the case of square granulometry function GS(X), a less
general, but much more e�cient technique can be proposed. This technique takes advantage of the fact that square
S can be decomposed into the Minkowski addition of the two elementary line segments E1 and E2:

S =
� �

� ��
=
� �

�
�

�

= E1 � E2 (19)

Therefore, the complex propagation step of the granulometry function algorithm described in [5] can in fact be
decomposed into two much simpler propagations, with substantial speed gain. The distance function extraction step
is followed by two linear propagation steps that are identical, except that one propagates distance values leftward in
each line, whereas the other one propagates values upward in each column.

The algorithm for right-to-left propagation of distance values is given below. Its principle is to propagate each
pixel value I(p) to the left I(p) � 1 times, or until a larger value v is found, in which case the list of propagated
values is reset to this value. . . The algorithm maintains an array propag containing the number of times each value
remains to be propagated.

Algorithm: Left propagation of distance values of dS(X)

� Input: image I of the generalized distance function dS(X);

� For each line of the image, do:

� Initializations: maxval 0 (current maximal value propagated);

� Scan line from right to left:

Let p be the current pixel;

If I(p) 6= 0:
If I(p) > maxval:

maxval I(p);
propag[I(p)] I(p);
80 < i <= maxval; propag[i] propag[i]� 1;
maxval largest i � maxval such that propag[i] >= 0;
I(p) maxval

A few implementation tricks can speed up computation by substantially reducing the number of times the entire
array propag is scanned per scanline. Their description would be beyond the scope of this paper. The resulting
algorithm is quasi-linear with respect to the number of pixels in the image, and is almost independent of object size
(see Table. 1). Using again the co�ee bean image as running example, the result of this propagation step is shown
in Figs. 6c{d, and the �nal granulometry function obtained after upward propagation in each column is shown in
Figs. 6e{f.

This algorithm can be adapted for granulometry functions with any structuring element that can be decomposed
as a Minkowski addition of the elementary line segments E1, E2, E3, and E4 (See Eqs. (19) and (20)). Furthermore,
it extends to the computation of hexagonal opening functions in the hexagonal grid [8].
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Figure 6 : Computation of granulometry function using square structuring el-
ements. (a) generalized distance function; (b) level lines; (c) prop-
agation of values from right to left; (d) level lines; (e) �nal granu-
lometry function; (f) level lines of granulometry function.



In square grids however, the elementary \diamond" structuring element D cannot be decomposed as Minkowski
addition of elementary line segments. The closest \approximation" is obtained with

D =

�

� � �

�

6=

�

� � �

�

= E3 � E4 (20)

and does not contain the central pixel of D! Therefore, starting from distance function dS(X) and using the
propagation algorithm in the Southwest-Northeast (SW-NE) direction, then in the Southeast-Northwest (SE-NW)
direction results in an incorrect propagation function, as illustrated by Fig. 7. Correct \diamond" granulometry
functions can nevertheless be obtained with this technique if SW-NE and SE-NW propagation steps are followed by
a \hole-�lling" step in which each pixel p such that

8i 2 f0; 2; 4; 6g; I(Ni(p)) = I(p) + 1

is given value I(p)+1. An example of such granulometry function is shown in Fig. 8.

(a) Original shape (b) Distance function (c) SW to NE propagation (d) SE to NW propagation

Figure 7 : When using \diamonds" as structuring elements, the two prop-
agation steps of the granulometry function algorithm need to be
followed by a \hole-�lling" step.

(a) (b) (c)

Figure 8 : Computation of granulometry function using \diamond" structur-
ing elements. (a) level lines of generalized distance function; (b)
level lines of relief obtained after SW to NE propagation; (c) level
lines of �nal granulometry function

Table 1 summarizes the speed of these granulometry functions on the 256 � 256 co�ee bean image used as
running example. We chose not to compare these timings with those of traditional opening-based algorithms. The
speed of the latter algorithms can indeed vary tremendously depending on the quality of the implementation. Note
however that for this co�ee bean image, which has approximately 30000 black pixels, Haralick's algorithm [5] takes
between 0.5s and 0.6s to compute the square granulometry function shown in Fig. 6e, on a Sparc Station 2. This
workstation being between two and three times slower than a Sparc Station 10, we can conclude that the algorithm
proposed in the present paper is between three and four times faster.



Type of granulometry function Execution time

horizontal 0.018s
max in 4 directions 0.207s

square 0.085s
\diamond" 0.094s

Table 1 : Execution time of various granulometry function algorithms on the
256� 256 co�ee bean image, measured on a Sun Sparc Station 10
workstation.

5 Grayscale Granulometries

Grayscale granulometries are potentially even more useful than binary ones, because they enable the extraction of
information directly from grayscale images. A number of theoretical results have been published on them (see e.g.
[7]); however, since until today, no e�cient technique was available to compute grayscale granulometries, they have
not been used very much in practice. In this section, we remedy this situation and introduce a new algorithm for
computing linear grayscale granulometries. A follow-up to this paper describes this algorithm in greater detail, and
also deals with the case of truly 2-D grayscale granulometries [18].

Like in section 3, let us for example deal with the horizontal case. The structuring elements considered are the
Ln's of equation (8). Let I be a discrete grayscale image.

De�nition 11 A horizontal maximum M of length l(M) = n in grayscale image I is a set of pixels

fp;N
(1)
0 (p); N

(2)
0 (p); : : : ; N

(n�1)
0 (p)g such that

8i; 0 < i < n; I(N
(i)
0 (p)) = I(p) and I(N4(p)) < I(p); I(N

(n)
0 (p)) < I(p): (21)

The study of how such maxima are altered through horizontal openings is at the basis of the algorithm introduced
here. The following proposition holds:

Proposition 12 Let M be a horizontal maximum of I. Let pl 2M and pr 2M respectively denote the extreme left
pixel and the extreme right pixel of M . Let n = l(M) be the length of this maximum. Then:

8k < n;8p 2M; (I � Lk)(p) = I(p); (22)

for k = n;8p 2M; (I � Ln)(p) = maxfI(N4(pl)); I(N0(pr))g < I(p); (23)

8k > n;8p 2M; (I � Lk)(p) < I(p): (24)

Intuitively, this means that any opening of I by a line segment Lk such that k < n leaves this maximum
unchanged, whereas for any k >= n, all the pixels of M have a lower value in I �Lk than in I . Furthermore, we can
quantify the e�ect of an opening of size n on the pixels of this maximum: the value of each pixel p 2M is decreased
from I(p) to maxfI(N4(pl)); I(N0(pr))g. In granulometric terms, the contribution of maximumM to the n's bin of
the horizontal pattern spectrum PS0(I) is:

n� [I(p)�maxfI(N4(pl)); I(N0(pr))g]:

This is illustrated by Fig. 9.

In addition, the e�ect of the horizontal opening of size n onM results in a new \plateau" of pixels being created
at altitude maxfI(N4(pl)); I(N0(pr))g. This plateau may or may not be itself a maximum of I � Ln.

Further to these remarks, the principle of the introduced grayscale granulometry algorithm is to scan the lines
of I one after the other. Each horizontal maximum M of the current line is identi�ed, and its contribution to
PS0(I)(l(M)) is determined. If it turns out that after opening of size l(M), the new plateau formed is still a
maximum, the contribution of this maximum to the pattern spectrum is computed as well. The process is iterated
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Figure 9 : Horizontal cross section of I with a maximum M . The shaded
area, of volume (h�h0)� l(M) shows the local contribution of this
maximum to the l(M)-th bin of the horizontal pattern spectrum.
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Figure 10 : How the contribution of the \maximal region" surrounding a maxi-
mum M is determined in the computation of the pattern spectrum.

until the plateau formed by opening is no longer a maximum, or until it becomes equal to the entire scanline
considered. The next maximum of the current line is then considered, etc. This process is illustrated by Fig. 10.

At any time during this process, the left and right pixels of each \maximal region" processed are stored, so
that this region does not have to be scanned again later. The resulting algorithm is therefore linear with respect
to the number of pixels in the image, and in the worst case, each image pixel is only scanned twice. In practice,
the execution time varies only slightly from image to image, depending on the number and complexity of maximal
regions found in each scanline.

We compared the speed of this algorithm to the traditional opening-based technique. For this latter, a highly
optimized opening algorithm was used, which is linear with respect to the number of pixels in the image, and whose
speed is (almost) independent of the length of the line segment used as structuring element. Both original 512� 512
weld images of Fig. 11 were used for this comparison. As illustrated by table 2, the new algorithm introduced in this
paper is up to three orders of magnitude faster!

Traditional (size 1 to 512) Traditional (size 1 to 30) New algorithm (size 1 to 512)

Weld image (a) 204s 13.0s 0.248s
Weld image (b) 204s 12.7s 0.206s

Table 2 : Execution time of traditional opening-based technique and of intro-
duced algorithm for the computation of a grayscale granulometry
with horizontal line segments. The 512 � 512 images of Fig. 11
were used for this comparison, done on a Sun Sparc Station 10.

The speed of this new algorithm opens up a range of new applications for grayscale granulometries. Traditionally,
the practical problems granulometries have been used to address dealt with either texture discrimination, or feature
extraction for object recognition. In the �rst case, either computation time was not an issue, or the discrimination



task could be performed o�-line. In the second case, granulometries were computed on very small images (e.g.
characters), so that computation time could remain reasonable.

With the algorithm introduced in this section, it becomes possible to use grayscale granulometries more sys-
tematically. These tools provide indeed an e�cient and accurate way to extract global size information directly
from a grayscale image. Extracting this information is sometimes a goal in itself; but this size estimation can also
be essential to calibrate the parameters of, e.g., an image segmentation algorithm, thereby greatly enhancing the
robustness of this algorithm.

Figs. 11a{b are used to illustrate how grayscale granulometries can be used to estimate size information2.
These �gures represent welds at a high magni�cation. The quality of these welds is related to the size, shape, and
organization of the light patterns observed in Figs. 11a{b. To estimate the size of the typical patterns in each image,
linear granulometries were used, both in the vertical and in the horizontal direction. The resulting pattern spectra
are shown in Figs. 11c{d. First, one can observe that the horizontal granulometric curve is very similar to the
vertical one; we conclude that the patterns in images 11a and 11b do not have any preferential orientation. Second,
the curves in Fig. 11c exhibit a well-marked peak for size 4, whereas the peak of the curves in Fig. 11d is found for
size 12. We conclude that the typical width and height of the patterns in Figs. 11a and in Fig. 11b is of 4 pixels and
12 pixels respectively.

6 Conclusion

Even though the concept of granulometry was introduced over 25 years ago, the computation time required to
extract granulometric curves made it impossible to use these curves for most practical applications. In this paper,
a comprehensive set of fast algorithms to compute granulometries in binary images was �rst described. Most of
these algorithms use opening functions as an intermediate step, and they are shown to be faster than any previously
available method.

A new algorithm for computing granulometries of grayscale images using openings or closings with linear struc-
turing elements is also introduced. This algorithm is so much faster (up to three orders of magnitude) than any
previously available technique that it makes it possible to use grayscale granulometries on a \routine" basis. Ex-
amples of application show how these granulometries can be used to extract global size information directly from a
grayscale image. These granulometries being one-dimensional, they can also be successfully used on 1-D signals. In
[18], this granulometry algorithm is generalized to the true 2-D case. It is expected these new algorithms will greatly
contribute to popularize the use of grayscale granulometries in the image and signal analysis community.

7 References

1. G. Bertrand and X. Wang. An algorithm for a generalized distance transformation based on Minkowski opera-
tions. In 9th International Conference on Pattern recognition, pages 1163{1167, Rome, Nov. 1988.

2. G. Borgefors. Distance transformations in digital images. Comp. Vis., Graphics and Image Processing, 34:334{
371, 1986.

3. Y. Chen and E. Dougherty. Texture classi�cation by gray-scale morphological granulometries. In SPIE Vol. 1818,
Visual Communications and Image Processing, Boston MA, Nov. 1992.

4. E. Dougherty, J. Pelz, F. Sand, and A. Lent. Morphological image segmentation by local granulometric size
distributions. Journal of Electronic Imaging, 1(1), Jan. 1992.

5. R. M. Haralick, S. Chen, and T. Kanungo. Recursive opening transform. In IEEE Int. Computer Vision and
Pattern Recog. Conference, pages 560{565, Champaign IL, June 1992.

6. R. M. Haralick and L. G. Shapiro. Computer and Robot Vision. Addison-Wesley, 1991.

7. E. J. Kraus, H. Heijmans, and E. R. Dougherty. Gray-scale granulometries compatible with spatial scalings.
Signal Processing, 34:1{17, 1993.

2Images gracefully provided by DMS, CSIRO, Australia.



(a) (b)

0

50000

100000

150000

200000

250000

300000

350000

0 5 10 15 20 25 30

Horizontal
Vertical

0

20000

40000

60000

80000

100000

120000

140000

0 5 10 15 20 25 30

Horizontal
Vertical

(c) (d)

Figure 11 : Using linear grayscale granulometries to estimate object size with-
out prior segmentation. Curve (c) clearly indicates that the typical
width and height of the white patterns in image (a) is 4 pixels. Sim-
ilarly, curve (d) shows that the typical width/height of the patterns
in (b) is 12.



8. B. La�y. Recursive algorithms in mathematical morphology. In Acta Stereologica Vol. 6/III, pages 691{696, Caen,
France, Sept. 1987. 7th International Congress For Stereology.

9. P. Maragos. Pattern spectrum and multiscale shape representation. IEEE Trans. Pattern Anal. Machine Intell.,
11(7):701{716, July 1989.

10. G. Matheron. El�ements pour une Th�eorie des Milieux Poreux. Masson, Paris, 1967.

11. G. Matheron. Random Sets and Integral Geometry. John Wiley and Sons, New York, 1975.

12. A. Rosenfeld and J. Pfaltz. Sequential operations in digital picture processing. J. Assoc. Comp. Mach., 13(4):471{
494, 1966.

13. A. Rosenfeld and J. Pfaltz. Distance functions on digital pictures. Pattern Recognition, 1:33{61, 1968.

14. M. Schmitt. Variations on a theme in binary mathematical morphology. Journal of Visual Communication and
Image Representation, 2(3):244{258, Sept. 1991.

15. J. Serra. Image Analysis and Mathematical Morphology. Academic Press, London, 1982.

16. L. Vincent. E�cient computation of various types of skeletons. In SPIE Vol. 1445, Medical Imaging V, pages
297{311, San Jose, CA, 1991.

17. L. Vincent. New trends in morphological algorithms. In SPIE/SPSE Vol. 1451, Nonlinear Image Processing II,
pages 158{169, San Jose, CA, Feb. 1991.

18. L. Vincent. Fast grayscale granulometry algorithms. In J. Serra and P. Soille, editors, EURASIP Workshop
ISMM'94, Mathematical Morphology and its Applications to Image Processing, pages 265{272, Fontainebleau,
France, Sept. 1994. Kluwer Academic Publishers.

19. L. Vincent and S. Beucher. The morphological approach to segmentation: an introduction. Technical report,
Ecole des Mines, CMM, Paris, 1989.

20. P.-F. Yang and P. Maragos. Morphological systems for character image processing and recognition. In IEEE
International Conference on Acoustics, Speech, and Signal Processing, pages V.97{100, Minneapolis, MN, Apr.
1993.

21. L.-P. Yuan. A fast algorithm for size analysis of irregular pore areas. In SPIE/SPSE Vol. 1451, Nonlinear Image
Processing II, pages 125{136, San Jose, CA, Feb. 1991.


