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Abstract

The filter that removes from a binary image its con-
nected components with area smaller than a parameter
A is caled area opening. From a morphological per-
spective, this filter is an agebraic opening, and it can
be extended to grayscale images. The properties of area
openingsand their dual areaclosingsarerecalled. In par-
ticular, it was proved in[13] that the area opening of pa-
rameter A of animage I isthe supremum of thegrayscale
images that are smaller than 7 and whose regional max-
ima are of area greater than or equal to A. Thistheorem
is a the basis of an efficient algorithm for computing
grayscale area openings and closings. Its implementa
tion involves scanning pixels in an order that depends
both on their location and value. For this purpose, the
use of pixel heaps is proposed. This data structure is
shown to be both efficient and low in memory require-
ments. In addition, it can be used in the computation of
various other complex morphological transforms. The
use of these area openings and closingsisillustrated on
image filtering and segmentation tasks

1 Notations, Definitions

In this paper, the binary images or sets under study are
subsets of a connected compact set M C IR? called the
mask. Similarly, grayscale images are mappings from
M toIR. For simplicity, only the 2-D case is considered
here, but thenotionsand algorithmsdiscussed generdize
to arbitrary dimensions. By area is meant the Lebesgue
measure in IR2. vz denotes the morphological opening
with respect to structuring element B.

Let us first recal the notion of connected openings
[9, 10]:

Definition 1 The connected opening C,(X) of a set
X C€ M at point z € M is the connected component
of X containingz if z € X and () otherwise.

The area opening ~§ can then be defined on subsets
of M asfollows[13]:

Definition 2 (binary area opening) Let X C M and
A > 0. The area opening of parameter A of X isgiven

by
(1)

Intuitively, if (X;);c 1 denotethe connected components
of X, v$(X) isequal to the union of the X;’swith area
greater than or equal to A:

7a(X) = {z € X | Area(C (X)) = A}

YHX) = U{XZ» |iel,Area(X;) > A} (2)
An example of binary area opening is shown in Fig. 1.
Note on this image that, by definition, the connected
components of the original image are either removed, or
entirely preserved.
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Figure 1: (a) origina image; (b) binary area opening.

Obvioudy, 4 is increasing, idempotent, and anti-
extensive. It istherefore an algebraic opening [6, 9, 10].
Its dual binary area closing can be defined as follows:

Definition 3 The area closing of parameter A > 0 of
X C M isgiven by:

SR(X) = [R(X ).

where X ¢ denotes the complement of X in M, i.e. the
set M\ X (\ denoting the set difference operator). As
the dua of the area opening, the area closing fillsin the
holes of X whose area is strictly smaller than the size
parameter A.




Asshownin[13], the growth of these transformations
makes it possibleto extend them to grayscale images:

Definition 4 (grayscale area opening) For a mapping
f ' M — IR, the area opening v{(f) isgiven by:

(A()(x) = sup{h < f(x) [z € 7x(Th(f))}, (3)

or:

(A(N)(2) = sup{h < f(z) | Area(yz (Tn(f))) = A},

In thisdefinition, 77, (f) stands for the threshold of f at
veluer, i.e

Tn(f) ={r eM | f(z) = h}. (4)

In other words, to compute the area opening of f,
the area openings v4(7%(f)) of the thresholds 75 (f)
of f are considered. Since v§ is increasing, ¥ C
X = 55(Y) CH(X). Thus the (73 (Ti ()},
are a decreasing sequence of sets which by definition
congtitutethe threshold sets of the transformed mapping
75 (f)-

By duality, one similarly extends the concept of area
closing to mappings from M to IR. These area openings
and closings for grayscale images are typical examples
of flat increasing mappings (also called stack mappings)
[10]. Their geometric interpretation is relatively ssim-
ple: unlikedynamics-based openings[2], which remove
structures based on their contrast, grayscale area open-
ings remove from an image all the light structures that
are“smaller” than the size parameter, i.e., based on their
area (number of pixels). Area closings have the same
effect on dark structures. Theorem 8 below provides a
more refined interpretation of this intuitive interpreta
tion.

2 Properties

In this section, a completely different interpretation of
area openings and closings is given. For more details,
including proofs, refer to[13].

A well-known theorem by Matheron states that a
trangd ation-invariant algebraic opening ~ is the supre-
mum of al the morphologica openings vg that are
smaller than or equal to v [6]. In the particular case of
area openings, a more precise characterization of these
morphological openings can be given:

Theorem 5 Denoting by .4, the class of the subsets of
M which are connected and whose area is greater than
or equal to A, the following equation holds:

7= U VB

BeAy

(5)

Similarly, it can be proved that the area closing of
parameter A isequa to the infimum of all the closings
with connected structuring elements of area greater than
or equal to A.

In the discrete domain, any connected set of area
greater than or equal to A € IN contains a connected
set of area equal to A. The theorem can thus be made
more specific asfollows:

Corollary 1 Let Z? bethediscrete plane equipped with
e.g., 4- or 8-connectivity. For X € Z°NM and A € IN,

74(X) = | J{78(X) | B € Z* connected , Area(B) = A}

Theorem 5 is easily extended to grayscale as follow:

Proposition 6 Let f : M — IR, be an upper semi-
continuousmapping [ 8, pp. 425-429]. Thearea opening
of f isgiven by:

7H =\ ).

SeAxN

(6)

A dual proposition can be stated for grayscale area clos-
ings.

The previous proposition leads to a different under-
standing of area openings (respectively closings). Asa
maximum of openings with al possible connected el-
ements of area greater than or equal to a given A, it
can be seen as adaptive: a every location, the (con-
nected) structuring element adapts its shape [1] to the
image structure so as to “remove as little as possible”
(seeFig. 2).
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Figure 2: Loca shape of an“adaptive structuring ele-
ment” when centered at the pixel shown in black in the
left image.

3 Relation with Regional Extrema

A third and more geometric interpretation of area open-
ingsis provided in this section (only openings are dealt
with here, the dual case of the closings being easy to de-
rive). Theorem 8 below is at the basis of the algorithm



proposed in section 4, so its proof will be given. Let
usfirst recall the notion of maximum on a mapping [8,
page 445].

Definition 7 Let f be an upper semi-continuous(u.s.c.)
mapping from M to IR. A (regional) maximum of f at
level h € IRisa connected component M of T}, ( f) such
that

YA > h, Tpy "M = 0. (7)

The following theorem can now be stated:

Theorem 8 Let f be a u.sc. mapping from M to IR,
A > 0. Denoting M, the class of the u.s.c. mappings
¢ © M — IR such that any maximum 3 of ¢ is of area
greater than or equal to A,

Y5(f) =suplyg < f g € My} (8)

Proof: Letg € My, g < f,andleth € R. Let A be an
arbitrary connected component of 7 (g). Since g is u.s.c.,
A is a compact set and therefore, there exists z € A such
that g(z) = max{g(y) | y € A}. Leth’ = g(z)and B =
Cx(Tw (g)). B isobviously amaximum of ¢ at altitude A’.
Indeed, if there existed a y € B such that g(y) > &', we
would have y' ¢ A (the maximal value of g on A is h),
andthus A C AU B C Tyn(g). Furthermore, A U B is
connected as the union of two connected sets with non-empty
intersection, which would be in contradiction with the fact
that A is a connected component of 73, (g). B is therefore a
maximum at altitude k' of g and B C A. Since by hypothesis,
Area( B) > X, wetherefore have Area( A) > A.

Thus, for every h € R, 73(Th(g)) = Tn(g). Besides,
Th(g) C Twh(f). Therefore, by growth of +%, v5(Tr(g)) =
Th(g) C v5(Th(f)). Thisbeing true for every threshold, we
concludethat g < v3(f)-

Conversely, Yh € IR, any connected component A of
Th(~5%(f)) isof area> A. Thus, al the maxima of v5(f)
are of area > . It follows that v%(f) € M, and (anti-
extensivity) v$(f) < f, which completes the proof. ad

4 Computation of Area Openings and
Closings

Computing area openingsin binary imagesis astraight-
forward matter: after alabelling of the connected com-
ponents, the histogram of the image provides the area
of each of its components. The too small ones are then
removed.

However, things are rather more complicated in the
grayscale case:

o Obvioudy, applying definition 2 and computing
v%(I) for every threshold of the original grayscale
image I then “piling up” the resulting binary im-
ages is amuch too computationally expensive op-
eration. Furthermore, itstime complexity increases
exponentially with the number of bits per pixel. . .

o Similarly, following proposition 6, the computa-
tion of al the possible openings with all the pos-
sible connected structuring elements with A pixels
becomes an impossible task as soon as A is greater
than4 or 5. Indeed, thenumber of possiblestructur-
ing elements becomes tremendous! Note however
that an approximate a gorithm based on such prin-
ciples was proposed for A < 8[1]. It is however
il very slow, inaccurate and the constraint A > 8
does not leave area openings and closings enough
“punch” for most applications.

Instead, the algorithm introduced now is based on
the third interpretation given for grayscale area open-
ings, namely that formalized in theorem 8. The general
principle of the proposed algorithm is to successively
consider al the maxima m of the image; for each m, a
“local threshold” aroundit isprogressively lowered until
its area becomes larger than the parameter A. In other
words, an iso-intensity line is drawn around m and its
intensity isdecreased until theenclosed regionisof area
> A. Denoting by I be the original grayscale image,
the successive steps of the proposed agorithm are as
follows:

o Extract the regional maxima of 7. For this step,
refer to[14, 12, 2]).

o For each regional maximum m of 7, do the follow-
ing:
— If the area of this maximum is larger than A,
go to the next maximum.

— Recursively scan the neighbors of m, in de-
creasing order of their gray value, until either
of the following two conditionisfulfilled:

* thenumber of pixelsscannedislarger than
A — Area(m)

* the next pixel on the ordered list of pixels
to be visited has a gray value larger than the
gray-level of the current pixel.

— Give al the corresponding pixels of I (in-
cluding pixelsbelonging to m) the gray value
of thelast pixd visited.

In this algorithm, the second condition deals with the
case of severa (say n) regiona maxima of I getting
merged into one maximum of J (see Fig. 3a). In such
cases, we avoid to scan this new maximum n times by
preventing a scanning to proceed when it would lead to
other maxima of /. Thisrule aso correctly deals with
the case of maxima of small arealocated next to alarge
and brighter area. Notice that in order for this method
to work, the algorithm has to proceed in a sequential
manner [12], i.e., modify the origina image after the
processing of each maximum! If themaximaof I wereto
be processed as above, but in aparallel fashion, then the



algorithm would have to be iterated until convergence
in order to properly deal with hierarchically organized
maxima of the kind of Fig. 3b.
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Figure 3: (a) set of maximathat get merged into one by
area opening; (b) hierarchy of maxima.

The sensitive point of this implementation is the re-
cursive ordered scanning of the neighbors of each maxi-
mum. Since the neighboring pixels of the current region
have to be processed in decreasing order of gray-level, a
simple queue of pixel pointerscannot be used [12]. One
has to use a structure which keeps track of the “priority
level” (i.e, gray-level) of each pixel. So-called hier-
archical queues [7] constitute one approach, but have
rather large memory requirements. for an image with
M different gray-levels, one would have to alocate as
much as M arrays of size A, which is completely irre-
aligtic for large values of A and images with, say, 12
significant bits.

Instead, we propose to use data structures that have
classically been used in sorting and searching algo-
rithms, namely priority queues or heaps [3]. A pixel
heap isbasically abalanced binary tree of pixel pointers
which satisfies the heap condition: the grayscale value
of any heap pixel is larger than the value of its chil-
dren. Among other operationsthat can be performed on
a heap, the operations of :

— inserting a new pixel

— removing the pixel with largest value

can beexecutedintime O(log(N)), N beingthenumber
of elements in the heap. These two operations each
involve the scanning of a most one full branch of the
tree in order to preserve its balanced state as well as
the heap condition. An example of insertion of a new
element isshown in Fig. 4.

Inthe present a gorithm, the use of apixel heap ispar-
ticularly appropriate. Itsmemory requirements (array of
pointers of size A) are negligible compared to what a
hierarchical queue would need! Equaly negligibleis
the speed gain provided by these queues. The heap im-
plementation of the algorithm described above ona Sun
Sparc Sation 2 computes area openings of size 100 on
a 256 x 256 image in less than 3 seconds on average!
Adapting it to area closingsis a straightforward task.

Figure4: Insertion of anew pixel of value 7 inthe pixel
heap. Modified nodes are shown in gray.

5 Applications

5.1 Imagefilteringtasks

It was mentioned earlier that areaopeningscan beseen as
morphological openings with structuring elements that
adapt their shapeto theunderlyingimage structure. This
clearly is important for some filtering tasks. Consider
for example Fig. 5a, which is a microscopy image of a
metalicalloy. Itis"corrupted” by some black noisethat
onemay wishtoremove. Inorder to do so without dam-
aging the inter-grain separating lines, a standard method
consists of using a minimum of linear closings: one ex-
pects that the separating lines are straight enough that
they will be preserved at least for one orientation of the
linear structuring el ement. Thisoperationisfollowed by
adual grayscale reconstruction [4, 14] that reconnects
the inter-grains lines that may have been broken by the
process. The result isshown in Fig. 5b.
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Figure 5: (&) Original image; (b) minimum of linear
closingsfollowed by dual grayscale reconstruction.

The problem with this method is that in order to as-
sureacorrect preservation of the separating lines, alarge
number of linear elements with different orientations
may be needed. Thisincreases the computationa com-



plexity of the agorithm while till requiring that the
inter-grains lines be straight enough in places. If these
lineswiggletoo much, they will aso be removed.

Both these speed and accuracy deficiencies can be
addressed by using an area closing instead. An area
closing of Fig. 5aisshown in Fig. 6a. At first sight, the
difference between thisimage and Fig. 5bisnot striking.
However, a pixelwise algebraic difference of these im-
ages followed by athresholding extracts theinter-grains
zones that have been better preserved by the area clos-
ing. Thisshows that the “adaptive structuring element”
of the area closing has played adecisiverole. Noticein
particular that the better preserved zones are mostly ori-
ented in non vertical, horizontal or diagonal directions.
Besides, the computation time of the area closing is far
inferior to that of the closing-reconstruction.
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Figure 6: (a) Area closing of Fig. 5a (b) zones where
the area closing outperformsthe closing-reconstruction.

Another example of these useful filtering capabilities
isshown in Fig. 71. Fig. 7ais anoisy image of fibers,
where the black noise needs to be removed while pre-
serving the fibers at best, even the thinnest ones. Once
again, thefilter that was experimentally found to be best
suited for this task is an area closing (see Fig. 7b). It
considerably simplifies the image, thus making the au-
tomatic extraction of itsfibers easier.

In summary, grayscale area openings and closings
are particularly suited to filtering tasks where thin and
elongated image structures have to be preserved. They
can beappliedinardatively systematic fashion, arefast,
and usualy outperform more standard morphological
filtering techniques. Moreover, as described in [13],
they can be combined into other kindsof filters, likearea
Alternating Sequential Filters [8, 13]. In addition, area
openings/closingsyield filtered images that do not have
the “boxy” look sometimes observed when using, e.g.,
openings/closings with squares: they have nice detail-
preserving capabilities.

1Image provided by Hugues Talbot, Ecole des Mines de Paris.

Figure 7: (a) Noisy image of fibers; (b) area closing of
@.

5.2 Useof area openingsand closingsfor imageseg-
mentation

Just aswith classic openings and closings, one can very
well perform top-hats [8] with area openings and clos-
ings. Thisallowsthe straightforward extraction of small
light or dark structures regardless of their shape. Asan
example, let us consider Fig. 8a, an angiographicimage
of eye blood vessels where microaneurisms have to be
detected. The latter are:
e small and light

o disconnected from the network of theblood vessels,

o predominantly located on the dark areas of theim-
age, i.e. here, the central region.
The agebraic difference between an area opening (of
size larger than any possible aneurism) and the original
imageitself can be called areatop-hat and isisshownin
Fig. 8b. The aneurisms are clearly visiblein thisimage,
and no blood vessel remain.

(@) (b)

Figure 8: (a) Angiography of eye blood vessels with
microaneurisms; (b) areatop-hat.

Here, in order to finishthe segmentation, morework is
necessary: onehasto account for thefact that aneurisms
are primarily located in dark areas of the image. A
solution to thisis proposed in [13], and the aneurisms
finally extracted are shownin Fig. 9.



Figure 9: Extracted microaneurisms.

6 Conclusions

In this paper, three different interpretations have been
provided for the area opening (resp. closing) of param-
eter A of agrayscaeimage I:

o definition as a flat mapping from the binary area
opening

o supremum of al the morphologica openings with
connected structuring elements of area larger than
or equal to the size parameter A

e supremum of all the grayscale images that are
smaller than I and whose regiona maxima are of
area greater than or equal to A.

While the first two interpretations do not trandate into
viable a gorithms, the third one leads to a very efficient
implementation of these transformations.

The practical use of grayscal e area openingsand clos-
ingswas reviewed on afew examples. These operations
were shown to be particularly suited to the filtering of
noisy images of thin and elongated structureslikefibers.
Moreover, they can be used for image segmentation via
the proposed area top-hat.

Last but not least, the use of a pixel heap for mor-
phological agorithms was introduced. Pixel heaps are
both efficient and low in terms of memory requirements.
They alow to recursively scan the neighbors of a set of
pixelswith decreasing (resp. increasing) gray-level, and
therefore play a key-role in the proposed area opening
algorithm. They aso lead to very efficient implementa
tionsof agood number of other grayscale morphological
algorithms, like:

— watersheds (algorithm derived from [15])
— grayscale reconstruction [14]
— morphological dynamics|[2]

— Euclidean skeletons and bisectors[11].

The description of these new methodswill constitutethe
topics of future publication.
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