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1 Introduction

Mathematical morphology can be considered as a set-based approach for the analysis of images [22,
23, 15]. One of its underlying ideas is to use so-called structuring elements to de�ne neighborhoods
of points. Recently it has been recognized that these ideas more generally apply to any space V
which has the structure of a vector space, or at least a group [11]. In that case one can de�ne a
neighborhood of a point x 2 V as

N(x) = fx+ a j a 2 Ag;

where A is the structuring element. In this chapter we describe how many of the concepts of
\classical morphology" (i.e. the case where V = IRd and where + denotes vector addition) can be
extended to spaces of images modelled by graphs.

A graph consists of a collection of points, called vertices, and a binary relation between them:
two vertices either are related or they are not related. This relation is usually represented by a
subset E � V � V called the edges; v and w are related if and only if (v; w) 2 E. Graphs play an
important role in many branches of mathematics and computer science. In the context of image
analysis they are often used as a geometrical representation of the scene under study. In this case
the vertices correspond to the objects in the scene and the edges describe the (neighboring) relations
between these objects. In this chapter, the images we consider consist of an underlying graph and
a scalar function de�ned on the set of vertices. In Section 2 we recall some basic notation and
terminology. In Section 3 we explain what we mean by a graph representation of an image, and we
introduce the notion of a graph operator.

Using the neighboring relations between vertices we are able to propose a large class of morpho-
logical operations on a graph. Beyond the basic operations (erosions and dilations, openings and
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closings), this class embraces almost all of the classical morphological transformations (distance
function, skeletons, geodesic transformations, watersheds, etc), see Section 4. In Section 5, we
present a number of examples of graph representation of images. There we introduce the Delaunay
graph, the Gabriel graph and the relative neighborhood graph. Furthermore, we illustrate some of
the classical morphological transformations for graph-based images.

The previously mentioned class of transformations can be extended by introducing the notion
of structuring graph. Exactly like structuring elements in classical morphology, structuring graphs
act as probes to extract structural information from graphs. They have a simple structure and
are relatively small compared to the graph that is to be transformed. The structuring graph is
used to construct a neigborhood function on the vertices by relating individual vertices to each
other whenever they belong to a local instantiation of the structuring graph. This is explained in
Section 6. Then, in Section 7 we use these neighborhood functions to de�ne dilations and erosions.
Subsequently, Section 8 deals with openings, closings, and other �lters. Finally, Section 9 is de-
voted to brief notes on implementation of morphological graph operations, and to some concluding
comments.

Let us close this introduction by the following important remark:

Although the theory is presented in the framework of grey-level graphs, all the drawings are
\binary", for the sake of clarity and simplicity.

2 Morphology for functions: concepts and basic results

In this section we give a brief overview of morphology for grey-level functions. For general results on
mathematical morphology we refer to Serra's books [22, 23]. A systematic exposition on grey-level
morphology can be found in [22, Chapter 12] and [9].

Although we shall often mean by a grey-level some continuous or discrete numerical value, it
may also represent a vector in color space. The only restriction we have to make on the set of
grey-levels T is that it possesses a complete lattice structure. Recall that T is called a complete
lattice if T is a partially ordered set in which every subset S has a least upper bound

W
S called

the supremum of S, and a greatest lower bound
V
S called the in�mum of S; see Birkho� [4].

Let V be an arbitrary set and de�ne Fun(V ) to be the space of all functions f : V ! T , where
the grey-level set T has a complete lattice structure. If we take T = f0; 1g, then Fun(V ) is the
space of all binary images on V , also represented by P(V ), the power set of V . Other choices for
T , sometimes found in the literature, are T = f0; 1; 2; : : : ;mg; T = ZZ = ZZ [ f�1;1g; T = IR =
IR [ f�1;1g; T = [0; 1]; T = [0;1]. With the pointwise ordering

f � g i� f(v) � g(v) for v 2 V;

the space Fun(V ) becomes a complete lattice. In fact, Fun(V ) inherits the complete lattice structure
from T . In this chapter we will always assume that T = f0; 1; : : : ;mg, but we point out that most
results carry over to the case where T is an arbitrary complete lattice.

In morphology we are interested in operators mapping the image space into itself.

De�nition 2.1 Let  be an operator on Fun(V ). We say that  is

(a) increasing if f � g implies that  (f) �  (g)

(b) an erosion if  (
V
i2I fi) =

V
i2I  (fi) for an arbitrary family ffi j i 2 Ig

(c) a dilation if  (
W
i2I fi) =

W
i2I  (fi) for an arbitrary family ffi j i 2 Ig
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(d) extensive if  (f) � f for every f

(e) anti-extensive if  (f) � f for every f

(f) idempotent if  2 =  

(g) a (morphological) �lter if  is increasing and idempotent

(h) an opening if  is increasing, anti-extensive and idempotent

(i) a closing if  is increasing, extensive and idempotent.

An important result in morphology says that dilations and erosions always occur in pairs. To
any dilation � there corresponds a unique erosion " (and vice versa) such that

�(f) � g , f � "(g); for f; g 2 Fun(V ): (1)

If "; � are operators on Fun(V ) such that (1) holds, then " is an erosion, � is a dilation and the pair
("; �) is called an adjunction. We say that " and � are each others adjoints. If " and � are adjoint,
then

"�" = " and �"� = �: (2)

There exists yet another duality relation between dilations and erosions. We denote by t� = m� t.
Furthermore, we de�ne the \negative" f� of the function f by

f�(x) = (f(x))� = m� f(x): (3)

If  is an operator on Fun(V ), then the dual operator  � is de�ned as

 �(f) = ( (f�))�: (4)

Note that this method carries over to any grey-level space T for which there exists an order-
reversing bijection. On T = [0;1] one may e.g. de�ne t� = 1=t. The mapping f ! f� is called a
dual automorphism. For more details we refer to [9, x III]. It is easy to see that  is increasing if
and only if  � is. If � is a dilation, then �� is an erosion and vice versa. For openings and closings
there exist similar duality relations.

An important class of function operators is formed by the so-called at operators [9, 24]. Here
we shall not give a formal treatment of such operators, but only give a brief sketch of the underlying
idea. By a at operator we mean an operator on Fun(V ) which is derived from an operator on the
power set P(V ) by thresholding. Starting with a function f , one obtains a family of sets Xt by
thresholding the function at grey-level t, i.e., Xt = fv 2 V j f(v) � tg. One then applies the
set operator  to this family, and uses the transformed family to construct  (f). In this chapter
we shall deal exclusively with at operators. In the literature many di�erent names have been
proposed for these operators, such as FSP-�lters (FSP = Function Set Processing) [14], or stack
�lters [35].

Let us conclude this section with some statements concerning at dilations and erosions. In a
sense which we shall not make precise here, the only way to de�ne at dilations and erosions, is by
considering neighborhood functions. A neighborhood function on V is a mapping N : V ! P(V ).
To any neighborhood function, there corresponds a reciprocal neighborhood function �N given by

�N(v) = fw 2 V j v 2 N(w)g: (5)
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Furthermore, with any neighborhood function one may associate an erosion and a dilation, adjoint
to each other, given by

�(f)(v) = supff(w) j w 2 �N(v)g
"(f)(v) = infff(w) j w 2 N(v)g:

(6)

Let �" and �� be the erosion and dilation corresponding to the reciprocal neighborhood �N . One can
show that

"� = ��; �� = �": (7)

One can also show that every at dilation and erosion is of the form (6).

3 Binary and grey-level graphs

In the previous section we have outlined the theory for morphological operators on the function
lattice Fun(V ) where V is an arbitrary set. In this chapter we are interested in the case that V is
the vertex set of a graph. There exist many good textbooks on graphs; we refer in particular to
the monograph of Berge [1].

In this chapter, by graph, we always mean a non-oriented graph without loops and multiple
edges. A graph G is a mathematical structure consisting of a set of vertices V and edges E. We
denote this as G = (V;E). Since edges are supposed to be simple, they may be represented as a
pair of vertices (v; w), denoting that v and w are neighbors. Our assumption that G is undirected
can be made explicit by putting (v; w) = (w; v). Let G = (V;E) and G0 = (V 0; E0) be two graphs.
We say that G is a subgraph of G0 if V � V 0 and E � E0. In literature, the word `subgraph' is
often used in a more restricted sense [1]. By a homomorphism from G to G0 we mean a one-to-one
mapping � : V ! V 0 with the property that (v; w) 2 E implies that (�(v); �(w)) 2 E0. In that case

we say that G and G0 are homomorphic, and write G
�
� G0. If the homomorphism � is onto (and

hence a bijection) then it is called an isomorphism. The graphs G and G0 are called isomorphic if
they are related by an isomorphism. We denote this as G ' G0. An isomorphism from the graph
G to itself is called a symmetry of G. We denote by Sym(G) the family of all symmetries of G.
Obviously, this family forms a group called the symmetry group of G. The identity mapping id,
de�ned by id(v) = v, is contained in Sym(G) and is called the trivial symmetry of G (see Fig. 1).

(a) (b)

Figure 1: The left graph (a) only has the trivial symmetry, whereas the
symmetry group of the right graph (b) contains 3 elements
(including the trivial symmetry).

Let G = (V;E) be a graph, and let f 2 Fun(V ). Then we call f a grey-level graph. If the
grey-level set is f0; 1g then f is called a binary graph. Sometimes, if we want to emphasize the
role of the underlying graph G, we write (f j G) instead of f . If (f j G) is a grey-level graph, and
� 2 Sym(G) then we de�ne (�f j G) by �f(v) = f(��1v), for v 2 V (G). Here V (G) denotes the
vertex set associated with the graph G.
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De�nition 3.1 A graph operator is a mapping which assigns to any graph G = (V;E) an operator
 (� j G) on the function space Fun(V ). A graph operator is called at if every  (� j G) is a at
operator. The graph operator  will be called G-increasing if  increases in G, that is,  (X j G) �
 (X j G0) for G � G0 and X � V (G). G-decreasingness of  is de�ned analogously. The graph
operator  is called increasing if for any graph G the operator  (� j G) is increasing.

We say that  is a graph erosion if  (� j G) is an erosion on Fun(V ) for every graph G =
(V;E). Analogously we de�ne graph dilations, openings, closings, �lters, etc. A graph neighborhood
function is a mapping N which, for every graph G, de�nes a neighborhood function on the vertex
set of G. A graph operator is called symmetry-preserving if  (�f j G) = � (f j G), for f 2
Fun(V ); � 2 Sym(G), and any graph G = (V;E). Note that this last de�nition is the analogon
of translation-invariance in classical morphology. There is a one-to-one correspondence between
graph neighborhood functions and at graph adjunctions. If N is a graph neighborhood function
which satis�es N(�v j G) = �N(v j G) for � 2 Sym(G), then the resulting adjunction is symmetry-
preserving. To illustrate some of these abstract de�nitions we will present an example: this example
is studied thoroughly in the following section.

Example 3.2 We de�ne a graph neighborhood function N in the following way. If G = (V;E) is
some graph and v 2 V , then we de�ne N(v j G) as the set containing v as well as all neighbors of
v, that is, N(v j G) = fw 2 V j (v; w) 2 Eg [ fvg. It is obvious that N is symmetry-preserving,
that is N(�v j G) = �N(v j G) for every � 2 Sym(G). As a consequence, the erosion and dilation
associated to this neighborhood function are symmetry-preserving.

Throughout the remainder of this chapter we shall, whenever no confusion arises, supress the
argument G, both in the notation of a grey-level graph and a graph operator.

4 A special case: nonstructured graph operators

Before the introduction of the notion of s-graph in [10], the only case of graph morphology which
had ever been studied is what could be referred to as non-structured graph morphology [29, 30, 31].
As we shall see in the sequel (section 6), these nonstructured graph operators turn out to be a
special case of the structured ones.

In the present framework, as explained in detail in [29], the morphological operations are directly
derived from the distance induced by the set of edges E on the set of vertices V . The graph distance
dG between two vertices v and w is given by the minimal number of edges to cross to go from v
to w or alternatively, by the length of the shortest paths connecting v to w in E. A collection of
edges � = (v1; v2; � � � ; vk) is called a path between v and w if v1 = v, vk = w, and (vi; vi+1) 2 E for
i = 1; � � � ; k. The length of the path is l(�) = k � 1. So we may write

dG(v; w) = inffl(�) j � is a path joining v and w in Eg: (8)

Since the graph structure under study is not necessarily connected, it may well happen that no
path connects v to w. In this case, we put conventionally the distance between these two vertices
equal to 1. So, strictly speaking, dG is not a metric.

Given a vertex v 2 V and an integer n 2 ZZ
+, the ball Bn(v) centered at v with radius n is

given by:
Bn(v) = fv0 2 V j dG(v; v

0) � ng:

Following Serra [23, Chapters 1{2] and the example mentioned at the end of the previous section,
we can now choose the Bn(v)'s as neighborhood functions (also called structural mappings, or
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sometimes, structuring functions). These functions associate with each vertex the neighborhood it
addresses in a dilation or erosion operation. Note that when n = 1, B1 is exactly the neighborhood
function N introduced in example 3.2.

Dilations and erosions with respect to these neighborhood functions are then de�ned as follows:

De�nition 4.1 Given a grey-level graph f on G = (V;E), the dilation �(n)(f) and the erosion
"(n)(f) of size n � 0 of f are the grey-level graphs given by:

8v 2 V;

(
�(n)(f) = maxff(v0) j v0 2 Bn(v)g;

"(n)(f) = minff(v0) j v0 2 Bn(v)g:
(9)

In the sequel, these operations shall be called dilation and erosion \of size n". Intuitively,
just like in classical morphology, dilations and erosions are de�ned as local maxima and minima
respectively. One of the main di�erences is that, in the present case, the number of vertices in a
given neighborhood (ball) Bn(v) is highly dependent on the vertex v. Indeed, such properties as
translation invariance are meaningless in a graph.

When n = 1 the resulting operations are called elementary dilation and erosion and are simply
denoted � and ". Like in classical morphology, we have here the following properties:

�(n)(f) = � � � � : : : � �| {z }
n times

; (10)

"(n)(f) = " � " � : : : � "| {z }
n times

: (11)

Thus, operations involving large neighborhoods can be decomposed into a succession of elementary
operators. This particularity is taken into account for the actual implementation of non-structured
graph dilations and erosions (see section 9).

To illustrate the e�ect of these operations on graphs, we shall use a binary example: suppose
that the grey-level graph f under study takes its values in f0; 1g, and let n � 0 be an integer. In
this case, performing a dilation of size n of f comes down to giving value 1 to each vertex v with
value 0 (i.e., such that f(v) = 0) having a vertex with value 1 in its neighborhood Bn(v):

f(v) = 0 and 9v0 2 Bn(v); f(v
0) = 1 =) �(n)(f)(v) = 1 (12)

f(v) = 1 =) �(n)(f)(v) = 1: (13)

By duality, eroding f amounts to giving value 0 to each 1-vertex v having a 0-vertex in its
neighborhood Bn(v). Figure 2 illustrates the e�ect of an elementary dilation of a binary graph. In
this �gure, the vertices with value one are represented in black.

In the present \non-structured framework", beyond these basic operations and their associated
openings and closings, the underlying distance dG is particularly interesting since it allows to de�ne
numerous more advanced transformations [28, 29]. We quote among others:

� distance functions,

� granulometries,

� skeletons, SKIZ,

� catchment basins, watersheds,

� geodesic operators, reconstruction,
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⇒

Figure 2: Non-structured elementary dilation of a binary graph.

� etc.

These graph transformations, described and illustrated in [29], turn out to be particularly interest-
ing in practice, as will be illustrated in the next section for distance functions, granulometries and
watersheds.

5 Graph representation of images, examples of application of non-

structured graph transformations

5.1 Modelling of neighborhood relationships

At this point, one may ask: why de�ne all these morphological transformations? What concrete
objects will they be applied to? What kind of problems will they help solving? It is now time to
address these issues.

The initial motivation of graph morphology was the study of neighborhood relationships within
populations of objects [29]. The idea is to model a set of objects V as the vertices of a graph and
to process this graph via morphological transformation to extract useful information. For example,
in histology, assuming that the objects of V represent cells in a tissue, it seems reasonable to model
such a population as the vertices of a neighborhood graphs [29, 31]. This graph provides plausible
relationships between cells, and can be chosen to be relatively independent of the deformations of
the tissue itself. Using tools described in the previous section, one can then try to characterize
quantitatively such notions as:

� average number of neighbors of a cell

� \isolated" cells of a given type (with respect to the underlying graphs)

� size distribution of the clusters of cells of a given type, or cells sharing common characteristics.
Such analyses can be done in the graph itself, which means that the actual distances between
cells do not matter: only the graph distance is accounted for, through the use of granulometries
on the graph.

� average distance in the graph between two cells of a given type, closest distance between a
cell of type A and a cell of type B, etc (use of distance functions on graphs)
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� etc.

In fact, graph morphology operations have already been successfully used in histology for the study
of germinal centers [20]. The same kind of approach can be used in various problems involving the
quantitative description of spatial relationships between objects.

5.2 De�nition of appropriate neighborhood graphs

For the category of aforementioned neighborhood problems, the �rst step is to de�ne and construct
a neighborhood graph from a 2-dimensional (or even n-dimensional) population of objects. This
initial population is often available under the form of a discrete binary image whose connected
components represent the objects under study. It usually results from a previous segmentation
stage.

This modelling purpose is generally best served by the neighborhood graphs of the Delaunay
Triangulation family (see for example [19]), namely the Delaunay Triangulation (DT) itself, the
Gabriel Graph (GG) [7] and the Relative Neighborhood Graph (RNG) [26]. Indeed, these graphs
do not depend on any parameter like a maximal distance between objects or a minimal number
of neighbors, a property which is very useful in practice [31]. This property implies in particular
that these graphs are independent of any scaling and can therefore be used equally well for various
kinds of populations. In addition, DT's, GG's and RNG's are connected graphs, they are planar
and they are included into one another, thus enabling a modelling of neighborhood relationships of
increasing strength.

These graphs are de�ned from the well-known Vorono�� Diagram (see e.g. [19, x 5.5]). Let us
assume for the sake of simplicity that the objects to be modelled are points p1; p1; � � � ; pn in the
continuous place IR2. Recall that the Vorono�� polygon associated with pi, denoted V (pi), is given
by

V (pi) = fp 2 IR2 j 8j 6= i; d(p; pi) < d(p; pj)g: (14)

The set of the boundaries of these Vorono�� polygons is called Vorono�� diagram (see Figure 3).
This de�nition easily extends to the discrete framework and to the case where the objects to

be modelled are no longer isolated points. One often speaks then of inuence zones and skeleton
by inuence zones (SKIZ).

The de�nitions of DT, GG and RNG follow straightforwardly. Let V = fpi j i = 1; : : : ; ng be
the initial set of points.

De�nition 5.1 The Delaunay triangulation of V is the graph Gdt = (V;Edt) such that Edt is the
set of the point pairs (pi; pj) whose associated Vorono�� polygons are adjacent, i.e., share an edge.

When V does not contain any co-circular 4 points, one can show that DT is e�ectively a
triangulation which is connected and planar.

To de�ne the Gabriel graph and the relative neighborhood graph, it is convenient to start from
two regions associated with a pair (p; q) of points in the plane: D(p; q) denotes the closed disc having
[p; q] as a diameter and Cr(p; q) is the intersection of the two open discs of radius pq repectively
centered in p and q, sometimes called the crescent. These notions are illustrated in Figure 4. Note
that D(p; q) n fp; qg � Cr(p; q).

De�nition 5.2 The Gabriel graph Ggg = (V;Egg) of V and the relative neighborhood graph Grng =
(V;Erng) of V are such that

� Egg is the set of the point pairs (pi; pj), with pk 62 D(pi; pj), if k 6= i; j
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Figure 3: Example of Voronoi Diagram.

p

q

p

q

D(p,q) Crescent(p,q)

Figure 4: The regions on which the de�nitions of Gabriel graphs and
relative neighborhood graphs are based.
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� Erng is the set of the point pairs (pi; pj), with pk 62 Cr(pi; pj), if k 6= i; j.

These three di�erent graphs are illustrated by Figure 5. Obviously, the following inclusion
relations hold:

Erng � Egg � Edt: (15)

Delaunay Triangulation Gabriel Graph Relative Neighborhood Graph

Figure 5: Three di�erent neighborhood graphs stemming from the
Vorono�� diagram.

De�nitions 5.1 and 5.2 can be extended to connected components of arbitrary size and shape
in the plane [31, pp 119{120].

5.3 Computation of DT, GG and RNG

The typical algorithms to determine these neighborhood graphs in practice rely on computational
geometry techniques [19]. When the connected components (objects) of the population are relatively
circular or small in comparison to the distance between them, they can be assimilated to isolated
points. One can then �rst apply some well-known Vorono�� diagram algorithms, like the \divide-and-
conquer" approach described in [19, Chapter 5] or incremental techniques such as that proposed
in [5]. These algorithms run in at most O(n log(n)) time, n being the number of points. DT and
GG can then be derived in a straightforward (and linear) manner. For RNG, the situation is much
more complex, but it can anyhow be derived in O(n log(n)) from the Vorono�� Diagram [25].

However, regardless of the computational e�ciency of these methods, they are rather limited
by the fact that they only work with isolated points as input data. Indeed, when the objects of the
population are arbitrary connected components of a discrete binary image, they are to be modelled
by polygons and the complexity of the associated algorithms becomes horrifying! Therefore, it
seems much more appropriate to make use of digital techniques introduced in [29, 28] and detailed
in [31]. Let us now briey describe and illustrate these algorithms.

For this purpose, we shall start from Figure 6(a), whose connected components will be the
vertices of our graphs. The successive steps of the algorithm are as follows:

1. Labelling of the connected components of the original image: each of them will be assigned
a unique number. This labelling can be accomplished extremely e�ciently by using, e.g., the
�rst-in-�rst-out (FIFO) based algorithms described in [33].
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2. Computation of the labelled inuence zones of these connected components. Roughly speak-
ing, the labels associated with each component are propagated in the image until they com-
pletely �ll up the remaining space, yielding a digital equivalent of the Vorono�� Diagram. This
computation has to be performed as accurately as possible (see [31, Chapter 5]), and discrete
distances such as the city-block, chamfers, octagonal or hexagonal distances [6] are generally
not good enough. Here we shall make use of an exact Euclidean distance function algorithm
described in [32] (see Figure 6(b)). The associated labelled inuence zones are displayed
Figure 7(a). The boundaries of these zones constitute the actual SKIZ (see Figure 7(b)).

(a) (b)

Figure 6: (a) Original binary image with several connected components
and (b) level lines of the distance function of its background.

3. Contour tracking of the inuence zones. By tracking the contours of zone with label i, one
gets successively all the labels of the neighboring zones. This allows an easy computation
of the \discrete" Delaunay Triangulation of our initial binary image. By using some addi-
tional constraints detailed in [31], one gets the Gabriel graph in the same way. The Delaunay
triangulation and Gabriel graph corresponding to Figure 6(a) are displayed Figure 8. Sim-
ilar techniques also enable us to derive discrete RNG's starting from arbitrary connected
components.

5.4 Examples of application

Besides the histology applications mentioned earlier, graph morphology has been used for very
di�erent problems. To give the reader some avor we shall briey mention some of them below.

Fracture simulations in porous media

Graph morphology provides nice tools for the study of heterogeneous media at a macroscopic level,
based on information on their microstructure [13]. Typically, one starts from a digitized picture
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(a) (b)

Figure 7: (a) Labelled Euclidean inuence zones of the connected com-
ponents of Figure 6(a); di�erent shades of grey represent dif-
ferent inuence zones. (b) Corresponding Vorono�� diagram:
boundaries of these inuence zones.

(a) (b)

Figure 8: (a) Delaunay Triangulation and (b) Gabriel Graph corre-
sponding to Figure 6(a).
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of a medium and models its microstructure as a graph. This graph can be either of DT or GG
type (see previous section), or based on the underlying discrete grid, depending on the kind of
information that is to be extracted.

Here, we are concerned with the study of crack propagation in propous media (see [34]). We
assume that we have a binary picture of the medium (pores: value 1, matrix, i.e., medium itself:
value 0, see Fig. 9(a)) and that a traction is exerted on it. Under this force, cracks will appear in
the material, and we are interested in �nding out what the crack paths look like, what their lengths
are, etc. The assumption underlining our approach is that crack paths tend to go preferentially
through the pores of the material. Moreover, assuming a crack has reached a particular pore p, its
next propagation step will most probably be one of the pores in the immediate neighborhood of
p. Therefore, we �rst model the set of pores as the vertices of a neighborhood graph and choose a
speci�c vertex or set of vertices VI as crack initiations. Then, we actually simulate the propagation
of a crack in the graph starting the vertices of VI .

The graph which seems most relevant to this kind of problem appears to be the Gabriel Graph
described in the previous section. For the actual simulation, one uses distance functions on this
graph (see [13, 34]): the graph distance function associated with the set VI is �rst determined, i.e.,
to each vertex (pore), one assigns its distance to the closest crack initiation. This allows to �nd
those vertices VE at one edge of the material which are �rst reached by a \wave" starting from
VI . Next, a backward distance function (back-propagation of a wave starting from VE) allows to
determine the actual crack paths between VI and VE .

This technique has been tested on concrete examples as well as arti�cially designed random
media, and gives very promising results. It is illustrated in Fig. 9 for the case of a medium made
of graphite nodules (the pores) disconnected from a pig iron matrix. The Gabriel graph of the
nodules (Fig. 9(c)) is derived from the Vorono�� diagram of Fig. 9(b). The forward and backward
distance functions are then displayed modulo 2, each vertex being represented as its associated
Vorono�� zone, for the sake of clarity. Lastly, the extracted crack paths are shown in Fig. 9(f).

Hierarchical representation and segmentation of images

Image segmentation is one of the most common problems in the �eld of image processing. A task
which is often related to image segmentation is concerned with the \hierarchisation" of an image,
i.e., the production of a series of images with decreasing level of detail: between two successive
images of the series, details of least importance are suppressed while the important features are
preserved. These two related issues can be approached in a common way by means of watersheds
on images and graphs [30, 31].

As explained in further detail in [30], the watershed transformation, whose use is more and more
common in image analysis, associates with every minimum of a picture its catchment basin, i.e.,
its inuence zone. Computing the watersheds of the gradient of an image I allows to decompose
I into regions, each of which corresponds to a perceptually relevant feature. Unfortunately, due
to noise, one often observes an oversegmentation, i.e., the regions into which the picture has to
be decomposed are fragmented, sometimes very badly. For example, Fig. 10(b) has been obtained
by computing the catchment basins of the gradient of Fig. 10(a) and assigning to each basin the
mean grey level of the corresponding pixels in the original image. This image is often referred to
as mosaic image. The \oversegmentation" of Fig. 10(b) can be clearly noted.

To get rid of this problem while producing a series of images with decreasing level of detail,
the method originally proposed in [30] considers the adjacency graph of the catchment basins.
A morphological gradient of this graph G is easily produced, e.g., by computing the transform
max(�(G)�G;G�"(G)). Then, determining the watersheds of this graph allows to merge catchment
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basins into catchment basins of second order. The resulting image, called mosaic image of order 2
(see Fig. 10(c)), has less detail than the previous one, but the main features have been preserved.
The procedure can be iterated to produce mosaic images of order 3, 4, etc. Unlike the classical
gaussian pyramids, the advantage of the present method is that it avoids blurring e�ects and
preserves the most signi�cant contours at best.

(a) (b) (c)

Figure 10: Successive image simpli�cation by watersheds on graphs

Study of cornea cell populations

This is one the medical applications where the interest of graph morphology is currently under
investigation. Images of the type shown Fig. 111 represent populations of cornea cells. The cells
exhibit roughly polygonal shapes and the main problem is to determine the distribution of the
number of edges of each cell. Beyond that, one would also like to answer such questions as: do the
small cells tend to have small cells as neighbors? What size do the clusters of cells of a given type
have? The same questions can also be asked for the cells with few (or with many) edges. . .

To address these issues, we use the adjacency graph of the cells, which is obtained after watershed
segmentation of image 11 and contour tracking of each extracted region. As can be seen in Fig. 12,
this graph is a triangulation. The determination of the number of neighbors of a given vertex yields
the number of edges of the associated cell in a straightforward manner. One can then assign to
each cell its number of edges, thus producing a grey-level graph. Granulometries on this graph
then provide useful information on the repartition of these cells in the tissue. The same analyses
can be performed by assigning each cell its size or any other relevant parameter [29].

6 Structuring graphs and neighborhood functions

The basic idea underlying classical morphology is to extract information from an image by probing
it at any position with some small geometrical shape called structuring element. Using operations
relating to the partial order of the underlying image space (e.g., supremum, in�mum) one may
construct a large class of image operators which are translation-invariant. This approach easily
carries over to grey-level graphs if one introduces the concept of a structuring graph or s-graph.

1Example provided by Dr. Barry Masters, USUHS, Bethesda MD.
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Figure 11: Population of cornea cell at a high magni�cation.

Figure 12: Adjacency graph correponding to Figure 11.
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De�nition 6.1 An s-graph A consists of a graph GA = (VA; EA) and two non-empty subsets
BA; RA � VA respectively called the buds and the roots.

Matching an s-graph A to the graph G at vertex v amounts to �nding a homomorphism �
mapping GA into G such that v 2 �(RA). Such a mapping � is called an embedding of A into G at
v.
N.B: We point out that we use the word \matching" in a di�erent meaning than is usual in the
current literature on graphs.

We can use an s-graph A to construct for any given graph G = (V;E) a neighborhood function
NA on P(V ) as follows:

NA(v j G) =
[
f�(BA) j � is an embedding of A into G at vg: (16)

Here the second argument G indicates the dependence on the underlying graph G. It is obvious
that

NA(�v j G) = �NA(v j G); for every � 2 Sym(G):

In Fig. 13 we have illustrated the concept of an s-graph and the corresponding neighborhood
function. In this �gure and the following ones, roots of s-graphs are designated by arrows and
buds are drawn in bold. Comparing this construction of a neighborhood function with classical
translation-invariant morphology where the neighborhoods are translates of a small set, called the
structuring element, the roots of the s-graph correspond to the origin of the structuring element
(note that an s-graph may have more than one root) and the buds to the points of the structuring
element. An important di�erence with classical morphology however is that for graphs the neigh-
borhood structure may di�er at each vertex so that the s-graph must prescribe the structure near
a vertex.

A B C D

NA (v) NB (v) NC (v) ND (v)

v vv v

v

Figure 13: s-graphs A;B; C;D and their corresponding neighborhood
functions at vertex v.
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Figure 13 shows that the neighborhood determined by an s-graph A depends upon several
factors. Adding points to the bud set (s-graph B), to the root set (s-graph C), or decreasing the
underlying graph (s-graph D) has the e�ect that the neighborhood increases. This motivates us to
de�ne a partial order � on the collection of all s-graphs which formalizes this observation. For two
s-graphs A;B we say that A � B (pronounce: A is more selective than B) if NA(v j G) � NB(v j G)
for any graph G and any vertex v on that graph. If A � B and B � A then A and B are equivalent
and we write A � B. In the example depicted in Figure 13 we have A � B, B � C, A � D. In [10]
we have shown the following result.

Proposition 6.2 Let A;B be s-graphs. Then we have A � B if and only if

(i) GB

�
� GA,

(ii) NA(v j GA) � NB(v j GA); for any v 2 RA.

In particular, A � B if and only if GA ' GB and NA(v j GA) = NB(v j GA) for any v 2 RA.

In section 2 we have seen that to any neighborhood function N on the set V there corresponds
a unique reciprocal neighborhood function �N . So if A is an s-graph and G = (V;E) a graph, then
there exists a reciprocal neighborhood �N of the neighborhood fuction NA(� j G). One may wonder
if there exists an s-graph B such that the reciprocal neighborhood function of NA(� j G) equals
NB(� j G) for any graph G. In [10] we have shown that one can give an a�rmative answer to this
question by de�ning the so-called reciprocal s-graph �A as follows:

G �A = GA; B �A = RA; R �A = BA;

see Figure 14(a). Then we have the relation

�NA(v j G) = N �A(v j G):

If the s-graph A coincides with its reciprocal, or more precisely, if A � �A then we say that A is
symmetric. Some examples can be found in Figure 14(b).

(a)

A A

^
⇒

(b)

Figure 14: (a) An s-graph A and its reciprocal �A. (b) Symmetric s-graphs.
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7 Dilations and erosions

In section 2 we have indicated how to de�ne grey-level dilations and erosions using neighborhood
functions. In combination with the construction method for neighborhood functions from s-graphs
described in the previous section, we have found a systematic way to build graph dilations and
graph erosions from s-graphs.

Let A be an s-graph and let NA be its corresponding neighborhood function. Consider an
arbitrary graph G = (V;E). Then �A and "A given by

�A(f)(v) = supff(w) j w 2 N �A(v j G)g
"A(f)(v) = infff(w) j w 2 NA(v j G)g

(17)

for f 2 Fun(V ), de�ne a graph dilation and a graph erosion respectively, and the pair ("A; �A)
forms an adjunction. Furthermore, both operators are symmetry-preserving. They are illustrated
in Fig. 15

dilation erosion

=  structuring graph

Figure 15: Dilation and erosion of a graph with respect to an s-graph.

Recall from Section 2 that the dual of an operator  on Fun(V ) is de�ned as  �(f) = ( (f�))�,
where f� = m� f is the negative of f . Since the mapping f ! f� turns suprema into in�ma and
vice versa one may conclude that the dual of a dilation is an erosion and conversely, that the dual
of an erosion is dilation. In [10] we have established the following result.

Proposition 7.1 For any s-graph A we have

��A = " �A and "�A = � �A:

We point out that a similar property holds in classical morphology. Though the resemblances
between graph morphological operators and the classical translation-invariant morphological oper-
ators are striking there are also some important di�erences. In particular, it is well-known that
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any translation-invariant dilation � on the binary image space P(IR)d is a Minkowski addition,
that is �(X) = X � �(f0g). A similar result holds for grey-level dilations. Unfortunately, there
exists no graph analogue of this fact. This means in particular that compositions or suprema of
dilations using one structuring graph cannot be obtained using only one (larger) s-graph. This is
due to the fact that the local graph structure near a vertex may be very diverse, and therefore the
neighborhood determined by an s-graph does not only depend on the number of buds and roots,
but also on the structure of the s-graph itself. This is quite di�erent from classical morphology
where this local structure is independent of the position, and therefore plays no role.

As a second distinction between graph and classical morphology we note that Matheron's theo-
rem, which, in the classical case, states that every increasing translation-invariant operator can be
decomposed as an intersection of dilations or as a union of erosions, does not have an analogue in
graph morphology. This follows immediately from the following considerations. The s-graph con-
struction of a neighborhood function on the vertex set of a graph is not the most general method
to obtain neighborhood functions which are invariant under the symmetries of the graph. In fact,
the s-graph approach requires \a certain amount of local structure to be present near a vertex".
One may construct more general neighborhood functions by requiring in addition that \the local
structure contents near a vertex does not exceed a certain amount". For example, we may de�ne

N(v) = fvg [ fw 2 V j (v; w) 2 Eg; if v has at most two neighbors;

and
N(v) = fvg; otherwise:

Such a construction gives rise to graph neighborhood functions (and hence graph dilations) which
are not G-increasing in general; see Figure 16. In particular the operators resulting from this
construction are symmetry-preserving, but cannot be written as an in�mum of graph dilations of
the form �A.

v v

Figure 16: A neighborhood function which is not G-increasing: see text.

8 Openings, closings, and other �lters

An operator is called a morphological �lter if it is increasing and idempotent. Idempotence is an
important property for an operator since it means that repeated application of such an operator
has no further e�ect on the outcome. In a sense, one could argue that any operator (morphological
or otherwise) designed to clean noise from an image, has to be applied repeatedly until the result
remains constant. In practice, such an iterative procedure results in idempotent operators; see
Heijmans and Serra [12]. A formal theory for morphological �lters has been designed by Matheron
[16]. In this section we shall apply some of his results to the framework of grey-level graphs.
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Though we shall mainly be concerned with openings and closings and construction methods for
such operators, we will consider alternating sequential �lters at the end.

Openings and closings lie at the heart of the theory of morphological �lters. Here we shall only
consider openings. The corresponding results for closings follow easily by duality in the following
way: if  is an opening then  � is a closing and vice versa. We refer to [10, Remark 6.5] for some
di�culties concerning the de�nition of closings in the graph framework.

A well-known construction of openings is to compose an erosion and its adjoint dilation. For
instance, �A"A is an opening for any s-graph A. In Figure 17 we have depicted an example of an
opening obtained in this way.

αA

=  structuring graph

δA 
εA

Figure 17: Two di�erent openings of a binary graph with respect to a
given s-graph.

A second way to build openings, closely related to the previous one, also uses s-graphs. We use
the following notation: if G = (V;E) is a graph, X � V and t 2 T , then we de�ne Ft(X) as the
grey-level graph which equals t at the vertices in X and inf T elsewhere. Let A be an s-graph. We
de�ne the graph operator �A by

�A(f) =
_
fFt(�(BA)) j GA

�
! G and Ft(�(BA)) � fg:

This expression looks rather complex at �rst sight, but it becomes much simpler for binary graphs
(X j G) where X � V . In that case �A(X j G) is the union of all embedded bud sets �(BA) where
� is an embedding of A into G (at an arbitrary vertex) such that �(BA) � X.

It is obvious that �A is

(i) an opening

(ii) a at operator (i.e., it commutes with thresholding: see Section 2)

(iii) symmetry-preserving

21



(iv) G-increasing.

The opening �A is called a structural graph opening. This terminology stems from [21] where
it has been shown that under rather mild assumptions (including translation-invariance) structural
openings form the basis for the collection of all openings. In [10], this result has been extended to
the case of graphs.

Proposition 8.1 Let � be a graph opening which is at, symmetry-preserving and G-increasing.
Then � can be decomposed as a supremum of structural graph openings.

One can also show that (see [10]) that

�A"A � �A:

An example where this inequality is strict is depicted in Figure 17(b).
So far we have seen two ways to construct openings: the �rst is by composition of an erosion

and its adjoint dilation, the second by de�nition of structural openings. Another powerful tool
to build openings is provided by the so-called inf-over�lters (again, the corresponding results for
closings follow by duality; here one must introduce the concept of a sup-under�lter). An increasing
operator  is called an inf-over�lter if

 (id ^  ) =  :

It is obvious that every extensive operator is an inf-over�lter. Furthermore, one can easily show
that the class of inf-over�lters is closed under suprema and selfcomposition. Our interest in inf-
over�lters stems from the fact that id ^  is an opening if  is an inf-over�lter. Now, if ("; �) is an
adjunction, and if �0 is a dilation such that �0 � �, then �0" is an inf-over�lter. Namely,

�0" � �0"(id ^ �0") = �0(" ^ "�0") � �0(" ^ "�") = �0":

The considerations above are valid on arbitrary complete lattices. Here we shall apply them to our
graph framework. Let A;B be two s-graphs such that A � B. Then �A � �B . Now the abstract
theory gives us that �B"A is an inf-over�lter, and hence that id^ �B"A is an opening: see Figure 18
for an example.

In classical morphology there exists yet another way to de�ne openings. Take A to be a sym-
metric structuring element (i.e., x 2 A i� �x 2 A) which does not contain the origin, and de�ne

�(X) = (X �A) \X:

One can easily show that � de�nes an opening. If A is a ring-shaped set (annulus) centered about
the origin, then � removes isolated particles: see Figure 5.2 of [23]. For this reason � is called an
annular opening. We can generalize this notion to graph morphology in the following way. Recall
from section 6 that an s-graph is called symmetric if �A = A.

Proposition 8.2 Let A be a symmetric s-graph, then id ^ �A is an opening.

proof: Though it is not di�cult to give a direct proof for grey-level graphs, the demonstration for
binary graphs is much more transparent. Since we are dealing exclusively with at operators
a restriction to binary graphs means no loss of generality. Furthermore we will supress the
argument G in the notation.
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A

X εA(X)

δBεA(X) X ∩ δBεA(X)

Deleted by filter

Structuring graphs :

B

Figure 18: Example of an inf-over�lter.

23



For a binary graph X � V the dilation can be written as

�A(X) =
[
x2X

NA(x):

It is obvious that id ^ �A is anti-extensive. To get idempotence it su�ces to show that

(id ^ �A)(id ^ �A) � id ^ �A;

or equivalently that
�A(id ^ �A) � id ^ �A:

Let X � V and Y = X \ �A(X). We show that

�A(Y ) � Y:

Let y 2 Y . Then y 2 �A(X) and so y 2 NA(x) for some x 2 X. Since A is symmetric we get
x 2 NA(y) � �A(X), since y 2 X. Therefore, x 2 X \ �A(X) = Y , and with y 2 NA(x) this
yields y 2 �A(Y ), which was to be proved. 2

An example of an annular opening is depicted in Figure 19
A class of morphological �lters which turned out to be quite successfull for the cleaning of noisy

images are the so-called alternating sequential �lters. For a full account of the underlying theory
we refer to [23, 24]. Here we only sketch the underlying idea. Let �1; �2; �3; : : : be a sequence of
openings, and �1; �2; �3; : : : a sequence of closings such that

�i�j = �j�i = �j and �i�j = �j�i = �j if j � i: (18)

The families �i and �i may be choosen independently; often however, they are taken to be each
other's dual. The operators

Mi = �i�i�i�1�i�1 : : : �1�1; Ni = �i�i�i�1�i�1 : : : �1�1

are called alternating sequential �lters or shortly AS-�lters. In [24] two other AS-�lters have been
introduced. A systematic way to obtain �i and �i is to put

�i = �i"i and �i = "i�i;

where ("; �) is an adjunction and "i denotes the i'th power of ".
The e�ect of an AS-�lter is that it successively removes larger and larger noise particles. Fur-

thermore it treats fore- and background in a more or less similar way. In graph morphology we can
construct AS-�lters by choosing structural openings �Ai

and their dual closings �Ai
which satisfy

the semigroup property (18). At this point it is important to recall the following results from [10].
Let A;B be s-graphs, we say that B is A-open if for every v 2 BB there is an embedding of A into
GB at v.

Proposition 8.3 Let A;B be s-graphs. The equalities

�A�B = �B�A = �B

hold if and only if B is A-open.

Now take a sequence of s-graphs Ai such that Ai+1 is Ai-open. See Figure 20 for a number of
such sequences. Then Aj is Ai-open if j � i. Let �i = �Ai

and �i = �Ai
be the corresponding

structural openings respectively closings. Then the operators Mi and Ni de�ned above are AS-
�lters.

Proposition 8.3 also lays the foundation for the de�nition of granulometries which in turn yield
size distributions. We can think of a granulometry as a collection of openings �i (i � 1) which
satis�es the �rst condition in equation (18).
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X

A

δA(X) X ∩ δA(X)

Structuring graph :(a)

(b)

Figure 19: (a) Example of an annular opening. (b) Some typical invari-
ants of the annular opening; note that every invariant is a
\union of translates" of the invariant at the left.
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(a)
A1 A2 A3 A4 A5

(b)
A1 A2 A3 A4

(c)
A1 A2 A3 A4

(d)
A1 A2 A3 A4 A5

Figure 20: Families of s-graphs to be used for AS-�lters and granulome-
tries on graphs. Note that Ai+1 has not necessarily more buds
than Ai.
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9 Concluding remarks

Before we conclude this chapter, let us give a few hints on the implementation of morphological
transformations on graphs. We already briey dealt with the obtention of neighborhood graphs
from binary images (see x 5). Transforming such objects morphologically �rst involves encoding
them in an appropriate way. This is achieved via a data structure derived from the adjacency
matrix of the graph [1], and detailed in [28, 29]. Given a vertex, this structure allows a direct
access to its neighbors.

For the algorithms themselves, two cases have to be considered: structuring and non-structuring
graphs. The �rst case is by far the most di�cult one: what one has to do basically is to �nd all
the di�erent ways of matching the structuring graphs within the graph to be transformed. This
is achieved by scanning the search tree as e�ciently as possible. The implementation of non-
structured graph operators is much easier. Indeed, as mentioned in x 4, all the nonstructured
graph morphology operations are based on the distance induced by the set of edges E on the
vertex set V . Therefore, breadth-�rst scannings will be at the basis of most algorithms. They
are implemented via the use of a queue of vertices, i.e., a �rst-in-�rst-out (FIFO) structure (see
Fig. 21). This is explained in further detail in [28, 31, 33].

v0 v1 v2 v3 v4
v

5 v6

First vertex to be extracted

New vertices
added

Figure 21: How a queue (FIFO structure) of vertices works.

For example, to determine the distance function of a graph, i.e., to assign vertex its distance to a
particular set W of vertices, one starts from the vertices ofW and does a breadth-�rst scanning. In
this procedure, the vertices at distance 1 are �rst met, then those at distance 2, etc, until stability
is reached. This algorithm|as well as many others described in [31]|is particularly e�cient since
each vertex is considered a minimal number of times. It was used for the �rst example presented
in x 5. Another example of distance function, on a Delaunay triangulation this time, is presented
Fig. 22.

Graph morphology provides a collection of morphological tools for the investigation of popula-
tions of objects for which neighborhood relations are of interest. Here an object may be a physical
or biological objcet, such as the nuclei in a microscopic image of some cell tissue, but they may also
refer to a symbolic description of a scene. As to the latter case one may think e.g. of the situation
where the objects represent the intensity extrema of a scene (see [17]). One can model spatial rela-
tionships between objects by di�erent types of graphs. In this chapter we have discussed three of
such graphs, namely the Delaunay triangulation, the Gabriel graph and the relative neighborhood
graph.

Although the intrinsic structure of a grey-level graph is much poorer than that of the Euclidean
space IRd or the discrete space ZZ

d, it is still rich enough to de�ne a large class of morphological
operators for such images which inherit many of the nice properties of their classical analogues.
Thereto we have introduced the concept of a structuring graph which generalizes the structuring
element in classical morphology. If the structuring graph consists of only two vertices connected
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(a) (b)

Figure 22: Example of a distance function on the Delaunay triangulation
of Figure 8(a). In (a), darker vertex values represent larger
distances and in (b), the distance function is displayed modulo
2.

by an edge then the resulting graph operators are of the so-called non-structured type. They are
easy to implement but still allow the construction of a large collection of morphological algorithms.
Structured graph operations, which use more information about the local graph structure near
a vertex, allow a much larger collection of morphological operations (see e.g. the sequence of
structuring graphs depicted in Figure 20 which can be used to de�ne granulometries and AS-
�lters), but they are de�nitely harder to implement. As often in science, the future will learn us
to which extent these structured and non-structured graph operations turn out to be useful in
practical applications.
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