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Abstract

The aim of this paper is to show that basic morphological operations can be incorporated within a statistical
physics formulation as a limit when the temperature of the system tends to zero. These operations can then be
expressed in terms of �nding minimum variance estimators of probability distributions. It enables us to relate
these operations to alternative Bayesian or Markovian approaches to image analysis.

We �rst show how to derive elementary dilations (winner-take-all) and erosions (loser-take-all). These opera-
tions, referred to as statistical dilations and erosion, depend on a temperature parameter � = 1=T . They become
purely morphological as � goes to in�nity and purely linear averages as � goes to 0. Experimental results are
given for a range of intermediate values of �. Concatenations of elementary operations can be naturally expressed
by stringing together conditional probability distributions, each corresponding to the original operations, thus
yielding statistical openings and closings. Techniques are given for computing the minimal variance estimators.

Finally we describe simulations comparing statistical morphology and bayesian methods for image smoothing,
edge detection and noise reduction.

1 Introduction

Image processing and computer vision requires nonlinear �ltering. Two of the most successful approaches are math-
ematical morphology (see for example Matheron [10] and Serra [12]) and bayesian methods (see e.g. Geman and
Geman [8]). These approaches arise from very di�erent philosophies and are formulated very di�erently. Morphology
involves a basic set of elementary operations which can be combined to perform nonlinear �ltering, valley or peak
extraction, edge detection, segmentation and other operations. The bayesian approach involves �nding the best
interpretation of the image assuming a probabilistic model. Most morphological operations can be implemented in
such a way that they require little computation (see Vincent [14]) while the bayesian approach may require simulated
annealing (Geman and Geman [8]) or continuation methods (Blake [2], Geiger and Girosi [4]). The bayesian approach
can be related mathematically (Geiger and Girosi [4], Geiger and Yuille [6]) to a variety of other nonlinear �ltering
techniques.

This paper gives a reformulation of morphology, statistical morphology, which makes it more similar to the
bayesian approach. Morphological operations are interpreted as the minimal variance estimators of probabilistic
models. We show that these estimators can be calculated straightforwardly. Concatenations of operations are
obtained from the laws of probability theory. This reformulation involves a temperature parameter T and standard
morphology is obtained in the limit as T ! 0 while as T !1, we obtain linear �ltering.

The next section de�nes elementary statistical morphological operations. Then, in the third section, we show
how to concatenate elementary operations and section 4 is concerned with the calculation of estimators. Section 5
shows experimental results of these statistical morphological operations. Lastly, in the sixth section, we describe
computer simulations comparing the morphological and bayesian approaches.
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2 Basic Morphological Operations

Complex morphological operations are built out of concatenations of elementary operations. The most primitive
operations are to replace the value at a certain pixel by the biggest, or smallest, value in a speci�c neighbourhood of
that pixel. This corresponds to winner-take-all and loser-take-all respectively, i.e., in morphological terms, dilations
and erosions.

More precisely, let I be a grayscale image. Morphologists often regard such objects as mappings from the discrete
plane ZZ2 into ZZ. The neighborhood mentioned above is here referred to as structuring element. It is a particular
subset B of ZZ2, that, for the sake of simplicity, we suppose symmetric (i.e., B = �B) and �nite throughout the
paper. The dilation �B(I) and erosion "B(I) of I by B are the grayscale images given by :

�B(I)

�
ZZ

2 �! ZZ

p 7�! maxfI(q) j q 2 B + pg

"B(I)

�
ZZ

2 �! ZZ

p 7�! minfI(q) j q 2 B + pg;

(1)

where B+p denotes the translation of B by p. Intuitively, dilation corresponds to taking maxima over a given neigh-
borhood whereas erosion corresponds to taking minima. Morphologists will note that we have restricted ourselves
to "at" structuring elements only.

Let us now rephrase these operations in terms more suited to the statistical physics framework. We here suppose
that the input pixels values are Ii and the neighbourhood of each pixel i is Ni. Ni is usually a translation of a given
structuring element. But more generally, the neighborhood Ni considered may have di�erent shapes at di�erent
locations. The derived operations are then no longer invariant by translation [12] and cannot be described with
formulas (1). For pixel i, we will represent this neighbourhood by a symmetric matrix Nij , such that Nij = 1
if j 2 Ni and Nij = 0 otherwise. We might also allow Nij to be a general matrix, corresponding to alternative
operations, this will not a�ect the analysis.

To obtain winner-take-all (dilation) for a speci�c pixel site i0 we �rst de�ne binary decision units Vi0j such that
Vi0j = 1 and Vi0k = 0 for j 6= k means that the ith0 site selects the jth input as the winner. The following analysis is
adapted from Geiger and Yuille [6].

We now de�ne a cost function

Ew[fVi0kg] = �
X
j

Vi0jNi0jIj ; (2)

where fVi0kg denotes (Vi01; :::; Vi0n) with n being the total number of pixels. The subscript w is used to label this as
the energy for winner-take-all.

Minimizing this energy with the constraint that
P

j Vi0j = 1 (i.e. only one winner is allowed) will give Vi0w = 1,
where Iw � Ij for j 6= w, and Vi0j = 0 otherwise.

Following statistical physics we can de�ne the Gibbs distribution [11]

Pw[fVi0kg] =
1

Z
e��Ew [fVi0jg]; (3)

where � = 1=T with T being the temperature and Z a normalization constant. It can be seen directly that, for �nite
temperature T , the lowest energy state is always the most probable. As T ! 0 the probability of being in this state
tends to one. As T !1 all states become equally likely.

It is straightforward to calculate
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Pw[Vi0k = 1; Vi0j = 0; for all j 6= k] =
e�Ni0kIkP
j e

�Ni0 jIj
: (4)

In the limit as � !1 (the zero temperature limit) only the lowest energy state will have non-zero probability
of occuring, so we obtain the winner-take-all. In the in�nite temperature limit, � = 0, we get Pw[Vi0j = 1] = 1= jNi0 j
for all j where jNi0 j is the size of the neighbourhood.

We de�ne the output of the system Ow(�) at location i0 to be

Ow(�) =
X
k

Ni0kIkPw[Vi0k = 1; Vi0j = 0; for all j 6= k] =
X
k

Ni0kIk
e�Ni0kIkP
j e

�Ni0jIj
(5)

(see next section for an interpretation of this de�nition). Note that if there is a tie then the results would be averaged.

Thus we obtain the morphological dilation in the limit as � !1 and a linear �lter corresponding to a spatial
average of the inputs as � ! 0. Other linear �lters could be obtained in the � ! 0 limit by varying the matrix Ni0j.

A similar analysis can be performed on erosions. We transform winner-take-all into loser-takes-all by altering
the sign of the energy. This gives

El[fVi0kg] =
X
j

Vi0jNi0jIj: (6)

Repeating the analysis for this energy gives the output of erosions at location i0, Ol(�), to be

Ol(�) =
X
k

Ni0jIkPw[Vi0k = 1; Vi0j = 0; for all j 6= k] =
X
k

Ni0jIk
e��Ni0kIkP
j e

��Ni0jIj
: (7)

Thus we have obtained formulae for statistical dilation, Ow(�) for � � 0 given by (5), and statistical erosion,
Ol(�) for � � 0 given by (7). The standard dilation and erosion operations can be obtained in the limit as � !1.

We now give an alternative interpretation. Observe that we have the identity

Ol(�) = Ow(��): (8)

This means that we could use one basic operation Ow(�) and obtain dilation and erosion from it in the limits
as � !�1. Intuitively we could think of dilation as being erosion at negative temperature or vice versa.

Besides, this is another way of expressing the duality between statistical dilations and erosions : just like classical
dilations and erosions with at structuring elements, these operations satisfy for any � � 0:

8f : ZZ2 �! ZZ; Ol(�)(�f) = �Ow(�)(f): (9)

In other words, a statistical dilation of f reduces to a statistical erosion of �f .

Similarly, like their classical morphological counterparts, statistical erosions and dilations are increasing opera-
tions, i.e., they preserve the ordering relationships between images :

8f : ZZ2 �! ZZ; f � g =) Ol(�)(f) � Ol(�)(g) and Ow(�)(f) � Ow(�)(g): (10)

However, one can be easily convinced that in the general case, neither operation is extensive or anti-extensive.
Furthermore, unlike linear operations (which commute with algebraic additions) and morphological erosions and
dilations (which commute respectively with inf and sup [12]), statistical erosions and dilations generally commute
with neither.
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3 Concatenations of Operations

We now show how to combine elementary operations. First we reformulate these operations as probabilities of
mappings from inputs fIjg to outputs fHig. We use the identity

P [HjI] =
X
V

P [HjV; I]P [V jI]: (11)

For winner-take-all (statistical dilation) we set

Pw[V jI] =
1

Z
e
�
P

ij
VijNijIj ; (12)

where we impose the requirement that for each i there exists a unique j such that Vij = 1.

There are several possible choices for Pw[HjV; I]. The most obvious, the one we used in the previous section, is
to assume that H is speci�ed uniquely if the V 's are given. This corresponds to

Pw[HjV; I] =
Y
i

�(Hi �
X
j

VijNijIj); (13)

where � is the Dirac delta function.

An alternative possibility comes from recalling that a delta function can be written as �(x) =

lim�!0
1

(2�)1=2�
e�x

2=2�2 . Thus one could de�ne Pw[HjV; I] =
1
Z e

���
P

i
(Hi�
P

j
VijNijIj )

2

, where � is a �xed con-

stant, from which we obtain equation (13) in the limit as � !1. This choice needs to be further investigated and
we will not use it in this paper.

Combining Pw[HjV; I], given by (13), and Pw[V jI] gives

Pw[HjI] =
1

Z

X
V

e
��f�

P
ij
VijNijIjg

Y
i

�(Hi �
X
j

VijNijIj); (14)

where Z is the normalization factor and the sum over the V maintains the restriction that
P

j Vij = 1 for each i.

It is now straightforward to see how to combine two di�erent operations. Suppose we wish to start with a
statistical dilation (winner-take-all) and follow it with a statistical erosion with the same neighborhood (loser-take-
all) (this operation will be referred in the sequel as statistical closing). For the winner-take-all we de�ne outputs H,
decision units V , and Pw[HjV; I] and Pw[V jI] as above. For the loser-take-all we have inputs H, outputs O, decision
units U , and de�ne Pl[OjU;H] and Pl[U jH] to be

Pl[OjU;H] =
Y
i

�(Oi �
X
j

UijNijHj);

Pl[U jH] =
1

Z
e
��
P

ij
UijNijHj : (15)

The combined operator, representing a statistical closing (statistical dilation followed by a statistical erosion),
has Plw[OjI] given by

Plw[OjI] =
X
H

Pl[OjH]Pw[HjI] =
X
V;U;H

Pl[OjU;H]Pl[U jH]Pw[HjV; I]Pw[V jI]: (16)
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To determine the output O we must specify an estimator for this probability distribution. We de�ne the output
to be the mean

O(�) =
X
O

OPlw[OjI]: (17)

This corresponds (Gelb [7]) to the minimal variance (MV) estimator of the distribution or, in other words, to
the estimator that chooses Omv to minimize

M [Omv] =

Z
[dO](O� Omv)

2Plw [OjI]: (18)

This estimator is believed to be more robust than the maximum likelihood (ML) estimator, which would corre-
spond to �nding the output Om that maximized Plw[OjI]. In any case the MV reduces to the ML as � ! 1 and
will correspond to the morphological operations in this limit.

These rules of combination, given by (14), can clearly be extended to arbitrary concatenations of elementary
operations by following the laws of probability theory. In the next section we show how to compute the MV estimators.

4 Computation of estimators

One of the advantages of morphological operations, compared with bayesian methods, is the ease of computation. In
this section we describe techniques that can directly compute the statistical estimators.

We propose using the minimal variance estimator (Gelb [7]) of the probability distribution. Techniques for
obtaining this estimator can be directly adapted from statistical physics.

We begin by considering the winner-take-all operation which has probability distribution given by (11), (12) and
(13). Using a standard technique from statistical physics (Parisi [11]) we will modify this distribution by including

dummy variables fAjg and a corresponding term e

P
j
AjHj into the probability distribution Pw[HjI]. Note that we

can recover the original distribution by setting Aj = 0 for all j. This gives

Pw[HjI; A] =
1

Z

X
V

e
��f�

P
ij
VijNijIjge

P
j
AjHj

Y
i

�(Hi �
X
j

VijNijIj): (19)

The normalization constant, or partition function, is a function of the fAjg given by

Z[A] =

Z Y
k

dHk

X
V

e
��f�

P
ij
VijNijIjge

P
j
AjHj

Y
i

�(Hi �
X
j

VijNijIj): (20)

Di�erentiating with respect to the fAjg it follows directly that

Hk[A; �] =
1

Z

@Z

@Ak
; (21)

where Hk[A; �] is the mean of the variable Hk with respect to the Gibbs distribution for �xed A and �. By setting
A = 0 we obtain the mean of the original distribution Pw[HjI].

It is straightforward to calculate Z[A]. First we integrate with respect to the fHig to obtain
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Z[A] =
X
V

e
�
P

i;j
NijVijIje

P
j
Aj

P
k
VjkNjkIk =

X
V

e

P
ij
(Ai+�)NijVijIj : (22)

Next we sum over the possible states V imposing the constraint that for each i there exists a unique j such that
Vij = 0. This gives

Z[A] =
Y
i

X
j

e(Ai+�)Nij Ij ; (23)

and so by di�erentiating we obtain

1

Z

@Z

@Ai
[A = 0] =

X
j

NijIj
e�Nij IjP
k e

�NikIk
; (24)

which agrees with the formula (5) given in section 2.

This procedure can be repeated for concatenations of operations. Consider the winner-take-all (statistical
erosion) followed by a loser-take-all (statistical dilation) given in (7). To simplify the mathematics we consider the
output Ok at a single site k.

We introduce a dummy �eld Ak as before and de�ne

Z(Ak) =
X
V

X
U

Z
[dH]dOk

Y
i

�(Hi�
X
j

VijNijIj)�(Ok�
X
l

UklNklHl)e
�
P

ij
NijVijIj e

��
P

j
NkjUkjHj eOkAk : (25)

Summing over the U 's and V 's, with the constraints that there is a unique l such that Ukl = 1 and that given i
there exists a unique j such that Vij = 1, yields

Z(Ak) =

Z
[dH]dOkf

X
l

�(Ok � NklHl)e
AkOke��NklHlgf

Y
i

X
j

�(Hi � NijIj)e
�Nij Ijg: (26)

Integrating with respect to Ok gives

Z(Ak) =

Z
[dH]f

X
l

e(Ak��)NklHlgf
Y
i

X
j

�(Hi � NijIj)e
�Nij Ijg: (27)

Integrating with respect to the fHlg gives

Z(Ak) =
X
q

X
p

e(Ak��)NkqNqpIpe�NqpIp
Y
i6=q

f
X
j

e�Nij Ijg: (28)

Thus using the relation Ok =
1

Z(Ak)
dZ(Ak)
dAk

(Ak = 0) we can calculate the MV estimator as

Ok =

P
q

P
p(NkqNqpIp)e

��NkqNqpIpe�NqpIp
Q

i6=qf
P

j e
�Nij IjgP

q

P
p e

��NkqNqpIpe�NqpIp
Q

i6=qf
P

j e
�NijIjg

: (29)
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This expression is somewhat complex but it is interesting that we can write the output of a dilation followed by
an erosion (at nonzero temperature) in one-shot as a di�erentiable input-output relation. Similar expressions can be
derived from concatenations of additional operations.

One way to approximate this computation is to compute the means of each of the stages in order. More precisely,
when computing the mean (MV estimator) of

Plw [O] =
X
H

Pl[OjH]Pw[HjI] (30)

we �rst compute the mean of H, H =
P

H HPw[HjI], and then compute the mean of O assuming inputs H, i.e.P
O OPl[OjH]. In statistical physics terminology this could be considered a mean �eld approximation since we

approximate the value of H by its mean value H. It should be emphasized that the mean �eld approximation can
be directly computed in this case, in constrast with many optimization problems where the mean �eld is de�ned by
a consistency equation which might have several solutions (e.g. see Geiger and Yuille [6]).

The use of the mean �eld approximation will drastically simplify the computations, though at the cost of only
approximating the minimal variance estimator. As � ! 1, however, the mean �eld approximation will become
exact and we will obtain the standard morphological operations. From this perspective one of the computational
advantages of morphology is that the mean �eld approximation can be used and is easily computable.

5 Experimental Results

As mentioned earlier, when the temperature T = 1=� is di�erent from 0 or +1, statistical dilations and erosions are
transformations which are in between moving averages (where the window is given by the structuring element) and
morphological dilations and erosions. As an example, Fig. 1. shows some intermediate steps between the blurring of
grayscale image 1.(a) using a moving average linear �lter and the dilation of this image. The window used in this
example is a 5 � 5 square. One can notice that some of the blurred zones resulting from the moving average are
progressively transformed into "plateaus". The fuzziness of image 1.(b) disappears progressively.

In the above example, a morphological dilation is opposed to a linear �lter. But in fact, dilations are rarely
used by themselves for �ltering tasks. They usually constitute the �rst step involved in the computation of either a
morphological closing or a closing by reconstruction or of more complex �lters [13], or serve totally di�erent purposes.
It seems therefore more appropriate to observe the intermediate steps between an average and a morphological closing.
This is done in Fig. 2.

This �gure illustrates well one of the potential uses of statistical morphological operations : in many cases,
linear transformations provide e�cient �ltering, but tend to blur the images too much and destroy their edges. On
the other hand, classical morphological �lters preserve edges better, but perform poorly in some cases. Statistical
openings and closings with � 6= 0 and � 6= +1 provide new �ltering tools which, in some cases, retain the advantages
of both the morphological and the linear approaches. For example on Fig. 2, the statistical closing with � = 10 seems
to outperform the moving average as well as the morphological closing in terms of visual estimation of the �lter.

Another interest of statistical morphological operations concerns shape description and representation : when
applied to a set or shape X represented via its associated characteristic function, statistical closings (resp. openings)
give a whole range of intermediate steps between the \blurring" of the set and its morphological closing (resp.
closing). This is illustrated by Fig. 3. Statistical morphology could therefore be at the basis of a general theory of
shape and provide an alternative, or complement, to such work as Kimia's [9].
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(a) original image (b) statistical dilation, � = 0 (moving average)

(c) statistical dilation, � = 2 (d) statistical dilation, � = 5

(e) statistical dilation, � = 10 (f) statistical dilation, � = +1 (standard dilation)

Figure 1: Examples of statistical dilations of a grayscale image at di�erent temperatures T = 1=�. The structuring
element used in this example is a 5� 5 square.
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(a) original image (b) statistical closing, � = 0 (moving average)

(c) statistical closing, � = 2 (d) statistical closing, � = 5

(e) statistical closing, � = 10 (f) statistical closing, � = +1 (standard closing)

Figure 2: Examples of statistical closings of a grayscale image at di�erent temperatures (same structuring element
as for Fig. 1).
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(a) original shape (binary image)

(b) statistical closing, � = 0 (c) statistical closing, � = 1

(d) statistical closing, � = 2 (e) statistical closing, � = +1 (standard closing)

Figure 3: Examples of statistical closings of a binary shape at di�erent temperatures (used structuring element :
5� 5 square). After each operation, the resulting image was thresholded at value 0.5.
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6 Comparisons with Bayesian Methods

Dilation followed by erosion, or vice versa, gives a natural method for nonlinear smoothing of images. It is interesting
to compare this approach with bayesian methods for nonlinear image smoothing. A classic example is the Geman
and Geman (1984) model which, in one dimension, de�nes an energy function

E[f; l] =
X
i

(fi � di)
2 + �

X
i

(fi+1 � fi)
2(1� li) + �

X
i

li; (31)

where fdig is the data, ffig represents the smoothed data and flig is a binary �eld (any element li can take values
0 or 1). The theory proposes minimizing E[f; l] with respect to f and l.

The second term in the cost function enforces smoothness between neighbouring sites i and i + 1, but this
smoothness can be broken by switching on the binary �eld li. This gives a form of nonlinear smoothing which
preserves edges. It can be given a bayesian interpretation using the Gibbs distribution

P [f; l] =
1

Z
e��E[f;l] : (32)

It was shown (Geiger and Girosi [4]) that using similar techniques to those in section (4), the binary �elds flig
can be eliminated to give

P [f ] =
1

Z
e��Eeff [f ]; (33)

where

Eeff [f ] =
X
i

(fi � di)
2 �

1

�

X
i

logf1 + e��f�(fi+1�fi)
2��gg: (34)

The theory proposes �nding the MV estimator for P [f ]. This can be contrasted with the formula for erosion
following dilation given by (25) where we identify f and d with O and I respectively.

There is no practical algorithm guaranteed to �nd the MV estimator of P [f ] (though in one dimension dynamic
programming will succeed). Simulated annealing can be used (Geman and Geman [8]) and some heuristic techniques
(Blake [2]) which can be related to mean �eld theory (Geiger and Girosi [4]) are highly e�ective in practice. Thus,
computationally, these algorithms are far more complex than morpology.

The speci�c Geman and Geman model has di�culty dealing with shot-noise or eliminating small valleys or peaks
in the intensity. This, however, can be �xed to some extent (Geiger and Pereira [5], Geiger and Yuille [6]) by adding
an additional �eld fVig that decides whether to accept or reject data. This gives a cost function

E[f; l; V ] =
X
i

(1 � Vi)(fi � di)
2 + �

X
i

(fi+1 � fi)
2(1� li) + �

X
i

li + �
X
i

Vi; (35)

If Vi = 0 then the data at position i is rejected and an penalty � is paid, otherwise the data is accepted as before.
This modication allows the theory to ignore outliers in the data, hence we refer to it as the robust bayesian approach.

The following �gures compare the behaviour of the robust bayesian approach to that of statistical morphology.
Fig. 4. shows the original image without and with pepper noise. The results of statistical operations are shown in
Fig. 5. The results of the robust bayesian method are shown in Fig. 6.

The statistical closing used a 3�3 window (larger windows gave poorer results). For small values of � (see Fig. 5
(a),(b)) the algorithm tended to smooth across boundaries and blurred the pepper noise, but did not eliminate it.
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(a) original image (b) original image with pepper noise

Figure 4: The house image. An 8-bit image of 256� 256 pixels, without and with added pepper noise.

Conversely as � 7! 1 (standard morphology, Fig. 5(e)) boundaries are preserved and the pepper noise eliminated,
but the overall picture is rather jagged. A good compromise is obtained by the intermediate values of �, see Fig. 5
(c),(d), which preserves boundaries, eliminates pepper noise and gives a smoothed image elsewhere.

The robust bayesian method was implemented using deterministic annealing [4], [6] and the �nal value of � was
0:005. The parameter values were � = 0:1, � = 8, � = 6400. The system took 150 iterations to converge.

The robust bayesian method generally performed well. It preserved most of the edges and suceeded in eliminating
some, but not all, of the pepper noise. Note that the standard Bayesian approach, (31), would have di�culty in
eliminating the pepper noise. In constrast to the statistical morphological approach the Bayesian method required
far more computation, in this case 150 iterations were used.

In summary, the statistical morphological closings with intermediate values of � were good at eliminating pepper
noise, preserving edges and smoothing the image. The robust bayesian method was very good at smoothing and edge
preservation, but did not elinimate all of the pepper noise. Statistical morphology required far fewer computations.

7 Conclusion

We have described a framework for statistical morphology which includes standard morphology as a special case.
Among other things, this has enabled us to formulate openings and closings as one-step operations, whose direct
approximate computation is possible. It is hoped that such a framework will allow morphological methods to be
directly compared with bayesian techniques.

We have also shown that the present approach provides a whole range of (statistical) operations in between
moving averages and usual morphological transformations. In particular, statistical openings and closings should
constitute interesting tools for �ltering tasks where blurring has to be removed while preserving edges.

In the future, statistical physics methods could also become useful in the framework of morphological �ltering
[13] : they would indeed provide an alternative approach [3] for determining optimal morphological �lters according
to some constraints.
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(a) statistical closing, � = 0

(b) statistical closing, � = 1 (c) statistical closing, � = 2

(d) statistical closing, � = 5 (e) statistical closing, � = +1 (standard closing)

Figure 5: Examples of statistical closings on the house image (with pepper noise) at di�erent temperatures (used
structuring element : elementary square).
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(a) the smoothed image

(b) the lines (c) the rejected data

Figure 6: Examples of the robust bayesian method on the house image (with pepper noise).
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